Galois theory — Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html

Version: October 29, 2019

Answers are due for Tueday November 12th, 3PM.

Exercise 1 The fifth cyclotomic field (100 pts)

In this exercise, we consider the primitive 5th root $\zeta = e^{2\pi i/5}$, and we set $L = \mathbb{Q}(\zeta)$. We know that L is Galois over \mathbb{Q} , so we define $G = \operatorname{Gal}(L/\mathbb{Q})$. We also let

$$c = \frac{\zeta + \zeta^{-1}}{2} = \cos(2\pi/5) = 0.309 \cdots,$$

 $C = \mathbb{O}(c).$

and finally

$$c' = \frac{\zeta^2 + \zeta^{-2}}{2} = \cos(4\pi/5) = -0.809 \cdots$$

- 1. (8 pts) Write down explicitly the minimal polynomial of ζ over \mathbb{Q} , and express its complex roots in terms of ζ .
- 2. (3 pts) Deduce that $\zeta + \zeta^2 + \zeta^3 + \zeta^4 = -1$.
- 3. (12 pts) Prove that G is a cyclic group. What is its order? Find an explicit generator of G.
- 4. (15 pts) Deduce that $c \notin \mathbb{Q}$.
- 5. (5 pts) Make the list of all subgroups of G.
- 6. (12 pts) Draw a diagram showing all the fields E such that $\mathbb{Q} \subset E \subset L$, ordered by inclusion.
- 7. (20 pts) What are the conjugates of c over \mathbb{Q} ? Determine explicitly the minimal polynomial of c over \mathbb{Q} (exact computations only, computations with the approximate value of c are forbidden).
- 8. (5 pts) Deduce that

$$c = \frac{-1 + \sqrt{5}}{4}.$$

9. (20 pts) What are the conjugates of ζ over C (as opposed to over \mathbb{Q})? Deduce that

$$\zeta = \frac{-1 + \sqrt{5} + i\sqrt{10 + 2\sqrt{5}}}{4}.$$