Galois theory - Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: October 29, 2019

Answers are due for Tueday November 12th, 3PM.

Exercise 1 The fifth cyclotomic field (100 pts)

In this exercise, we consider the primitive 5th root $\zeta=e^{2 \pi i / 5}$, and we set $L=\mathbb{Q}(\zeta)$. We know that L is Galois over \mathbb{Q}, so we define $G=\operatorname{Gal}(L / \mathbb{Q})$. We also let

$$
\begin{gathered}
c=\frac{\zeta+\zeta^{-1}}{2}=\cos (2 \pi / 5)=0.309 \cdots \\
C=\mathbb{Q}(c)
\end{gathered}
$$

and finally

$$
c^{\prime}=\frac{\zeta^{2}+\zeta^{-2}}{2}=\cos (4 \pi / 5)=-0.809 \cdots
$$

1. (8 pts) Write down explicitly the minimal polynomial of ζ over \mathbb{Q}, and express its complex roots in terms of ζ.
2. (3 pts) Deduce that $\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=-1$.
3. (12 pts) Prove that G is a cyclic group. What is its order? Find an explicit generator of G.
4. (15 pts) Deduce that $c \notin \mathbb{Q}$.
5. (5 pts) Make the list of all subgroups of G.
6. (12 pts) Draw a diagram showing all the fields E such that $\mathbb{Q} \subset E \subset L$, ordered by inclusion.
7. (20 pts) What are the conjugates of c over \mathbb{Q} ? Determine explicitly the minimal polynomial of c over \mathbb{Q} (exact computations only, computations with the approximate value of c are forbidden).
8. (5 pts) Deduce that

$$
c=\frac{-1+\sqrt{5}}{4} .
$$

9. (20 pts) What are the conjugates of ζ over C (as opposed to over $\mathbb{Q})$? Deduce that

$$
\zeta=\frac{-1+\sqrt{5}+i \sqrt{10+2 \sqrt{5}}}{4}
$$

