Galois theory - Exercise sheet 2

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: October 15, 2019

Answers are due for Tuesday October 29th, 3PM.

Exercise 1 Yes or no (35 pts)

Let $f(x)=x^{3}+x+1 \in \mathbb{Q}[x]$ (you may assume without proof that f is irreducible over $\mathbb{Q})$, and let $L=\mathbb{Q}[x] /(f)$.

1. (10 pts) Is L a separable extension of \mathbb{Q} ? Explain.
2. (20 pts) Is L a normal extension of \mathbb{Q} ? Explain.

Hint: What does the fact that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is strictly increasing tell you about the complex roots of f ?
3. (5 pts) Is L a Galois extension of \mathbb{Q} ? Explain.

Exercise 2 Square roots (65 pts)

Let $L=\mathbb{Q}(\sqrt{10}, \sqrt{42})$.
In this exercise, you may use without proof the fact that for all $a, b \in \mathbb{Q}^{\times}$,

$$
\begin{aligned}
\mathbb{Q}(\sqrt{a})=\mathbb{Q}(\sqrt{b}) & \Longleftrightarrow \sqrt{b} \in \mathbb{Q}(\sqrt{a}) \\
& \Longleftrightarrow a / b \text { is a square in } \mathbb{Q} \\
& \Longleftrightarrow \text { The numerator and denominator of a/b are squares. }
\end{aligned}
$$

1. (5 pts) Prove that L is a Galois extension of \mathbb{Q}.
2. (10 pts) Prove that $[L: \mathbb{Q}]=4$.
3. (15 pts) Describe all the elements of $\operatorname{Gal}(L / \mathbb{Q})$. What is $\operatorname{Gal}(L / \mathbb{Q})$ isomorphic to?
4. (20 pts) Sketch the diagram showing all intermediate extensions $\mathbb{Q} \subset E \subset L$, ordered by inclusion (you may re-use without proof the subgroup diagram of $\operatorname{Gal}(L / \mathbb{Q})$ seen in class). Explain clearly which field corresponds to which subgroup.
5. (15 pts) Does $\sqrt{15} \in L$? Use the previous question to answer.
