Galois theory - Exercise sheet 1

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: September 24, 2019

Answers are due for Tuesday October 1st, 3PM.

Exercise 1 Small non-prime finite fields (50 pts)

1. (10 pts) Make a complete list of all finite fields (up to isomorphism) with at most 30 elements and which are not isomorphic to $\mathbb{Z} / p \mathbb{Z}$ for some prime $p \in \mathbb{N}$.
2. (30 pts) Give an explicit construction for each of them.
3. (10 pts) Make a list of all pairs (K, L) such that K and L are in your list and that L contains a copy of K (up to isomorphism).

Exercise 2 Two models for \mathbb{F}_{8} (50 pts)
Let $K=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ and $L=\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$.

1. (5 pts) Prove that K and L are fields.
2. (15 pts) Determine the number of elements of K, and of L. Why does your answer imply that K and L are isomorphic?
3. (30 pts) Describe explicitly an isomorphism between K and L.

Hint: Write $L=\mathbb{F}_{2}[y] /\left(y^{3}+y^{2}+1\right)$. Which equation does the class of $y+1 \in L$ satisfy? (Remember that $z=-z$ in characteristic 2, since $2 z=0$.)

