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Version: November 26, 2018

Answers are due for Monday 26 November, 11AM.

The use of calculators is allowed.

Exercise 8.1: How many squares? (20 pts)
1. (10 pts) Find an integer > 2000 which is the sum of 3 squares, but not of 2

squares.

2. (10 pts) Find an integer > 2000 which is the sum of 4 squares, but not of 3
squares.

Solution 8.1:
1. We know that if there is a prime p ≡ −1 (mod 4) such that p | n but p2 - n,

then n won’t be a sum of 2 squares. So let us take p = 3 for instance. We can
take n = 2001: since the sum of digits is 3, 3 | n but 9 - n, so n is not a sum
of 2 squares.

Besides, if we had n = 4a(8b + 7), then necessarily a = 0 since n is odd. But
n ≡ 1 6≡ 7 (mod 8), so n is not of the form 4a(8b+ 7). As a result, n is a sum
of 3 squares.

2. Since every integer is a sum of 4 squares, it suffices to take an n of the form
4a(8b+ 7) for any a and b. We can go the easy way and take a = 0, so we just
need n ≡ 7 (mod 8). So for instance n = 2007 works.

Exercise 8.2: Bézout in Z[i] (40 pts)
Compute gcd(α, β), and find ξ, η ∈ Z[i] such that αξ + βη = gcd(α, β), when

1. (20 pts) α = 4 + 6i, β = 5 + 3i,

2. (20 pts) α = 8− i, β = 5− 2i.
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Solution 8.2:
This is the same principle as in Z: we do euclidean divisions until we get a null
remainder, and then we go back up the relations we have found to get ξ and η.

1. Let us first perform a euclidean division of α by β. We have

α

β
=

(4 + 6i)(5− 3i)

34
=

(2 + 3i)(5− 3i)

17
=

19 + 9i

17
≈ 1 + i,

so the quotient is 1 + i and the remainder is (4 + 6i)− (5 + 3i)(1 + i) = 2− 2i.
We record this relation for later use.

Next, we divide the divisor by the remainder, that is to say 5 + 3i by 2 − 2i.
We have

5 + 3i

2− 2i
=

(5 + 3i)(2 + 2i)

8
=

1

2
+ 2i ≈ 2i,

so our quotient is 2i (but we could also take 1 + 2i) and the remainder is
(5 + 3i)− (2− 2i)2i = 1− i. We record this relation for later use.

Next step: divide 2 − 2i by 1 − i. Obvously, this is an exact division, with

quotient 2 and remainder 0. This means that gcd(α, β) = 1− i (note that

1− i = −i(1 + i) is associate to 1 + i, so 1 + i is also a gcd). Besides, we have

1−i = (5+3i)−(2−2i)2i = (5+3i)−
(
(4+6i)−(5+3i)(1+i)

)
2i = (5+3i)(−1+2i)−(4+6i)(2i)

so we can take ξ = −2i, η = −1 + 2i .

2. (10 pts) Same process. First, we divide 8− i by 5− 2i:

8− i
5− 2i

=
(8− i)(5 + 2i)

29
=

42 + 11i

29
≈ 1

so the quotient is 1 and the reminder is (8− i)− (5− 2i) = 3 + i. We record
this relation for later use.

Next, we divide 5− 2i by 3 + i:

5− 2i

3 + i
=

(5− 2i)(3− i)
10

=
13− 11i

10
≈ 1− i,

so the quotient is 1− i and the remainder is (5− 2i)− (3 + i)(1− i) = 1. We
record this relation for later use.

Finally, we should divide 3 + i by 1. Of course the quotient is 3 + i and
remainder 0, so we stop. We have found that gcd(α, β) = 1, which means that
α and β are coprime.

To find ξ and η, we compute

1 = (5−2i)−(3+i)(1−i) = (5−2i)−
(
(8−i)−(5−2i)

)
(1−i) = (5−2i)(2−i)−(8−i)(1−i)

so we can take ξ = −1 + i, η = 2− 2i .
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Exercise 8.3: Factorization in Z[i] (40 pts)
Factor 29 + 3i into irreducibles in Z[i].

Solution 8.3:
We first compute that

N(29 + 3i) = 292 + 32 = 850 = 2× 52 × 17.

This tells us that 29 + 3i factors as

29 + 3i = π2π5π
′
5π17,

where πp denotes an irreducible of norm p.
But we know the irreducibles of Z[i], so we deduce that up to invertibles, we

must have π2 = 1 + i, π5 = a ± bi, π′5 = a ± bi, and π17 = c ± di, where a, b (resp.
c, d) is a solution to a2 + b2 = 5 (resp. c2 +d2 = 17). We see that we can take a = 2,
b = 1, c = 1, d = 4.

Besides, if π′5 6= π5, then up to invertibles π′5 = π5, so we would have 5 = π5π
′
5 |

(29 + 3i), which is clearly not the case. Thus we can assume that π′5 = π5. As a
result, the factorization looks like

29 + 3i = u(1 + i)(2± i)2(1± 4i)

where u ∈ Z[i]× = {±1,±i} is invertible.
We can first remove the known factor (1 + i): we find that

u(2± i)2(1± 4i) =
29 + 3i

1 + i
= 16− 13i.

We now need to determine if π5 = 2 + i or 2− i, and similarly for π17. For this,
we test whether 16− 13i is divisible by 2 + i: if it is, then π5 = 2 + i, else we must
have π5 = 2− i. We compute that

16− 13i

2 + i
=

19− 42i

5
6∈ Z[i],

so (2 + i) - (16− 13i) so π5 is not 2 + i, thus π5 = 2− i.
Removing the factor π2

5 yields

uπ17 =
16− 13i

(2− i)2
= 4 + i.

But since π17 is irreducible, so is uπ17 (remember that u is invertible), so we may
redefine π17 as 4 + i.

Conclusion: our complete factorization is

29 + 3i = (1 + i)(2− i)2(4 + i).

The exercises below are not mandatory. They are not worth any
points, and are given here for you to practise. The solutions will be
made available with the solutions to the other exercises.
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Exercise 8.4: Number of ways
For each of the following n ∈ N, give the number N(n) of pairs (x, y) ∈ Z2 such that
n = x2 + y2, and explain how the elements of Z[i] of norm n factor.

1. n = 261,

2. n = 2000,

3. n = 6000.

Solution 8.4:
Remember that if n factorsin Z as 2a

∏
j p

vj
j

∏
k q

wk
k where the pj are distinct primes

≡ +1 (mod 4) and the qk are distinct primes ≡ −1 (mod 4), then the number of
elements of Z[i] of norm n is{

4
∏

j(1 + vpj(n)), if wk is even for all k,

0, else,

since such an element must factor as

u(1 + i)a
∏
j

πbjpjπ
vj−bj
pj

∏
k

q
wk/2
k

where u ∈ Z[i]× is invertible and πp is an irreducible of norm p, which can be found
by finding a solution to x2 + y2 = p. Therefore,

1. An α ∈ Z[i] of norm n = 261 = 32 29 must factor as u3π or u3π where π is a
fixed irreducible of norm 29 (since 29 = 52 + 22 we can take π = 5 + 2i), so
N(261) = 8.

2. An α ∈ Z[i] of norm n = 2000 = 24 53 must factor as u(1 + i)4πbπ3−b with
0 6 b 6 3 where π is a fixed irreducible of norm 5 (for instance π = 2 + i), so
N(261) = 16.

3. Since 6000 = 24×3×53 and since 3 ≡ −1 (mod 4) has odd multiplicity, there
is no α ∈ Z[i] of norm 6000, so N(6000) = 0.

Exercise 8.5: Forcing a common factor
Let α, β ∈ Z[i].

1. Prove that N
(

gcd(α, β)
)
| gcd

(
N(α), N(β)

)
.

2. Explain why we can have N
(

gcd(α, β)
)
< gcd

(
N(α), N(β)

)
.

3. Suppose now that gcd
(
N(α), N(β)

)
is a prime p ∈ N. Prove that p 6≡ 3

(mod 4).

4. Still assuming that that gcd
(
N(α), N(β)

)
is a prime p ∈ N, prove that either

α and β are not coprime, or α and β̄ are not coprime (or both).
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5. Suppose more generally that gcd
(
N(α), N(β)

)
is a integer n > 2, which we no

longer assume to be prime. Is it true that either α and β are not coprime, or α
and β̄ are not coprime (or both)? Is it true that at least one of N

(
gcd(α, β)

)
and N

(
gcd(α, β̄)

)
is n?

Solution 8.5:
1. Since the norm is multiplicative, we know that if δ | α then N(δ) | N(α).

As a result, if δ | α and δ | β, then N(δ) | N(α) and N(δ) | N(β), so
N(δ) | gcd

(
N(α), N(β)

)
. This applies in particular to δ = gcd(α, β), whence

the result.

2. Let p be a prime such that p ≡ 1 (mod 4), for instance p = 5. Then we know
that in Z[i], p decomposes as p = ππ̄, where π and π̄ are both irreducible of
norm p and are not associate to each other. Let us take α = π, β = π̄. Then
since they are irreducible and not associate to each other, they are coprime,
so N

(
gcd(α, β)

)
= 1, even though gcd

(
N(α), N(β)

)
= gcd(p, p) = p.

3. From gcd
(
N(α), N(β)

)
= p, we infer that possibly after swapping α and β

we must have p | N(α) but p2 - N(α). By considering the factorization of α
in Z[i], we deduce that α is divisible by an irreducible π of norm p. No such
irreducible exists if p ≡ −1 (mod 4), whence the result.

4. We have p | N(α), so α must be divisible by an irreducible π dividing p in
Z[i]. Similarly, there is an irreducible π′ | p such that π′ | β. But if p = 2,
then there is only one π | p up to invertibles, so π′ must be associate to π
so that π divides both α and β, whereas if p ≡ 1 (mod 4) (which is the only
other possible case by the previous question), then π′ is associate either ot π,
in which case π divides both α and β again, or to π̄, in which case π divides
both α and β̄.

5. Let p | n be a prime. Then we have again p | N(α) and p | N(β), so as in the
previous question we find an irreducible of norm p which divides both α and
either β or β̄ (or both), so the answer to the first question is yes.

However, the answer to the second question is no. Consider for instance two
distinct primes `, p ∈ N which are both ≡ 1 (mod 4), so that they decompose
as ` = λλ̄, p = ππ̄ in Z[i], and the irreducibles λ, λ̄, π, π̄ are pairwise coprime,
and take α = λπ, β = λπ̄, so that β̄ = λ̄π. Then we have N(α) = N(β) = `p,
so that gcd

(
N(α), N(β)

)
= `p, but gcd(α, β) = λ and gcd(α, β̄) = π both

have norm < `p (` for the former, p for the latter).

Exercise 8.6: Integers of the form x2 + xy + y2 (difficult)
Let ω = eπi/3 = 1+i

√
3

2
∈ C, and let Z[ω] = {a+ bω | a, b ∈ Z}. Note that ω satisfies

ω2 − ω + 1 = 0 and ω6 = 1.
We define the norm of an element α ∈ Z[ω] by N(α) = αᾱ = |α|2.

1. Check that Z[ω] is a domain.

2. Prove that N(a + bω) = a2 + ab + b2. Deduce that the set of integers of the
form x2 + xy + y2, x, y ∈ Z, is stable under multiplication.
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3. Prove that an element of Z[ω] is invertible iff. its norm is 1. Deduce that the
set of invertibles of Z[ω] is

Z[ω]× = {ω, ω2, ω3 = −1, ω4, ω5, ω6 = 1}.

4. Prove that Z[ω] is euclidean.

Hint: {1, ω} is an R-basis of C.

5. Deduce that Z[ω] is a UFD.

6. Let p 6= 3 be a prime. Prove that if p 6= 2, then
(−3
p

)
=
(
p
3

)
, and deduce that

the equation x2 + x+ 1 = 0 has solutions in Z/pZ iff. p ≡ 1 (mod 3).

7. Prove that the primes p ∈ N decompose in Z[ω] as follows:

(a) if p = 3, then 3 = ω5(1 + ω)2 (note that ω5 is invertible),

(b) if p ≡ 1 (mod 3), then p = ππ̄, where π ∈ Z[ω] is irreducible and has
norm p,

(c) if p ≡ −1 (mod 3), then p remains irreducible in Z[ω].

Hint: Prove that if p = a2 + ab + b2, then at least one of a and b is not
divisible by p.

8. What are the irreducibles in Z[ω]?

9. Deduce from the previous questions that an integer n ∈ N is of the form
x2 + xy + y2, x, y ∈ Z iff. for all primes p ≡ −1 (mod 3), the p-adic valuation
vp(n) is even.

10. Adapt the previous exercise to find a formula for the number of pairs (x, y),
x, y ∈ Z such that x2 + xy + y2 = n in terms of the factorization of n in Z.

Solution 8.6:
1. It is clear that Z[ω] is stable under addition and subtraction, and for multipli-

cation we have

(a+ bω)(c+ dω) = ac+ (ad+ bc)ω + bd(ω − 1) = (ac− bd) + (ad+ bc+ bd)ω

since ω2 = ω−1, so Z[ω] is a ring. Besides, the product of 2 nonzero complexes
is nonzero, so Z[ω] is indeed a domain.

2. Since ω ∈ C \R, the complex roots of the polynomial x2 − x+ 1 are ω and ω̄,
so we have ω + ω̄ = 1 and ωω̄ = 1. Therefore,

N(a+ bω) = (a+ bω)(a+ bω̄) = a2 + ab(ω + ω̄) + b2ωω̄ = a2 + ab+ b2.

Besides, since clearly N(αβ) = N(α)N(β), we deduce that the set of integers
of the form a2 + ab+ b2, a, b ∈ Z, is stable under multiplication.
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3. If α is invertible, then N(α)N(α−1) = N(1) = 1, whence N(α) = 1 since
norms are positive integers. Conversely, if N(α) = 1, then α is invertible of
inverse ᾱ. Therefore, the invertibles are the a+bω with a2 +ab+b2 = 1. From

a2 + ab+ b2 = (a+ b/2)2 +
3

4
b2

we see that |b| 6 1.

For b = −1, we must have a = 0 or 1, for b = 0, we must have a = ±1, and
for b = 1, we must have a = 0 or −1, so there are exactly 6 invertibles. But ω
is invertible since 1 = ωω̄ = ω(1−ω), so all powers of ω are a also invertibles,
and since ω = eπi/3, the sequence of powers of ω is periodic of period exactly
6, so all 6 invertibles show up this way.

4. Observe first that if we extend the norm to all of C by setting N(z) = zz̄, we
have

N(λ+ µω) = λ2 + λµ+ µ2 (?)

for all λ, µ ∈ R.

Let now α, β ∈ Z[ω], β 6= 0; we want to show that there exist γ, ρ ∈ Z[ω] with
α = βγ + ρ and N(ρ) < N(β).

We have α/β ∈ C, so since {1, ω} is an R-basis of C there are λ, µ ∈ R such
that α/β = λ + µω. Let l,m ∈ Z be such that |l − λ| 6 1

2
and |m − µ| 6 1

2
,

and let γ = l+mω ∈ Z[ω] and ρ = α−βγ ∈ Z[ω]. Then N(α
β
−γ) 6 1

4
+ 1

4
+ 1

4

by (?), so

N(ρ) = N(α− βγ) = N(
α

β
− γ)N(β) 6

3

4
N(β) < N(β).

5. The proof is the same as for Z and Z[i]: now that we have euclidian divi-
sion available, we can prove Bézout, and deduce Gauss’s lemma and then the
uniqueness of factorization from there.

6. (Compare with question 2 of exercise 7.4) Suppose first that p 6= 2, 3. The we
have (

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)p

′
(−1)

3−1
2
p′
(p

3

)
=
(p

3

)
which is +1 if p ≡ 1 (mod 3), and −1 if p ≡ −1 (mod 3). Now, the discrimi-
nant of x2 + x + 1 is −3, so we see that this polynomial has 2 roots mod p if
p ≡ 1 (mod 3), and none if p ≡ −1 (mod 3). Also, it has no roots mod 2, so
the conclusion is also true for p = 2.

7. (a) Checking that 3 = ω5(1 + ω)2 is a mere matter of calculation.

(b) If p ≡ 1 (mod 3), then by the previous question there exists x ∈ Z such
that p | (x2 + x + 1) = (x − ω)(x − ω̄) = (x − ω)(x + 1 − ω). Both of
these fators lie in Z[ω], and p clearly does not divide them, so by Gauss’s
lemma p is not irreducible, so we may write p=ππ′ with π, π′ ∈ Z[ω]
non-invertibles. Since N(p) = p2, we must haveN(π) = N(π′) = p, so π
and π′ are irreducible and π′ = π̄.
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(c) If p ≡ −1 (mod 3) were reducible in Z[ω], then since N(p) = p2, it would
factor as a product of two irreducibles of norm p. Let a + bω be one
of them; then we would have p = N(a + bω) = a2 + ab + b2. If a and
b were both divisible by p, then a2 + ab + b2 would be divisible by p2,
which is absurd. But if p - a, then we get x2 + x + 1 = 0 in Z/pZ
with x = ba−1 mod p, which contradicts the previous question. Same
thing if p - b. So we have reached a contradiction, which shows that p is
irreducible.

8. Every α ∈ Z[ω] divides its norm, which lies in N and is thus a product of
prime numbers. We have determined how these prime numbers decompose
in Z[ω] in the previous question, so we have found all irreducibles: they are
1 +ω (norm 3), the primes p ≡ −1 (mod 3) (norm p2), and the two conjugate
irreducibles dividing each prime p ≡ 1 (mod 3) (and we can check that these
two are never associate to each other by testing all 6 invertibles, but this is
tedious), which have norm p.

9. This is now the same proof as for Z[i], taking what we know abot the irre-
ducibles and their norms into account.

10. We find that this number is{
6
∏

p≡1(3)(1 + vp(n)), if vp(n) is even for all p ≡ 1 (3),

0, else

(note that this time we have 6 invertibles).
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