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Version: October 31, 2018

Answers are due for Wednesday 31 October, 11AM.

The use of calculators is allowed.

Exercise 6.1: A huge number! (25 pts)
For this exercise, remember that every integer is congruent mod 9 to the sum of its
digits.

Let A = 44444444, let B be the sum of the digits of A, let C be the sum of the
digits of B, and finally let D be the sum of the digits of C.

1. (15 pts) Compute D mod 9.

2. (7 pts) Prove that D ⩽ 14.
Hint: Start with the upper bound A < 100005000 = 1020000.

3. (3 pts) What is the exact value of D (as opposed to just mod 9)?

Solution 6.1:
1. Since every integer is congruent mod 9 to the sum of its digits, we have D ≡

C ≡ B ≡ A (mod 9), so we can just as well compute A mod 9.
Now 4444 ≡ 16 ≡ −2 (mod 9), so A ≡ (−2)4444 (mod 9). Now −2 and 9
are coprime, so by Fermat’s little theorem we have (−2)ϕ(9) ≡ 1 (mod 9). We
have ϕ(9) = 6, so we can replace the exponent 4444 by anything congruent
to it mod 6. Since 4444 ≡ 4 (mod 6), we deduce that A ≡ (−2)4 = 16 ≡ 7
(mod 9).

2. We are going to estimate roughly the size of D. First of all, we have

A < 100005000 = 1020000,

so A has at most 20000 digits, so

B ⩽ 9× 20000 = 180000.

So either B has 6 digits and the first one is a 1, or it has 5 digits or less; either
way

C ⩽ 1 + 6× 9 = 55.

Therefore C has at most 2 digits and the first one is at most 5, so

D ⩽ 5 + 9 = 14.

3. Since we know that D ≡ 7 (mod 9) and that D ⩽ 14, we conclude that in
fact D = 7.
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Exercise 6.2: Primitive roots mod 43 (35 pts)
1. (5 pts) Suppose you choose an element of (Z/43Z)× at random. What is the

probability that this element is a primitive root? In other words, what is the
proportion of elements of (Z/43Z)× that are primitive roots?

2. (15 pts) Find a primitive root g ∈ (Z/43Z)×.

3. (10 pts) What is the multiplicative order of g261, where g is the primitive root
found in the previous question?

Solution 6.2:
1. Since 43 is prime, primitive roots exist. More precisely, there are exactly

ϕ(ϕ(43)) = ϕ(42) = 12 of them. Compared to the ϕ(43) = 4 elements of
(Z/43Z)×, that’s a proportion 12/42 = 2/7 that are primitive roots.

2. We are just going to try values of g until we find one. Since 42 = 2 · 3 · 7,
we know that g is a primitive root if and only if g2·3 = g6, g2·7 = g14, and
g3·7 = g21 are all ̸= 1.
Obviously g = 1 is not a primitive root (quite the opposite!), so let us try
g = 2. We compute in Z/43Z that

26 = 64 = 21 ̸= 1,

but
214 = (27)2 = (2 · 21)2 = 422 = −12 = 1

so 2 is not a primitive root.
Let us try g = 3:

36 = 3432 = 81 · 9 = −5 · 9 = −45 = −2 ̸= 1,

314 = 323636 = 9 · −2 · −2 = 36 = −7 ̸= 1,

321 = 3 · 36314 = 3 · −2 · −7 = 42 = −1 ̸= 1

so g = 3 is one of the 12 primitive roots.

3. Since g is a primitive root, it has order ϕ(43) = 42. Thus

MO(g261) =
MO(g)

gcd(MO(g), 261)
=

42

gcd(42, 261) =
42

3
= 14.

Exercise 6.3: A multiplicative sequence (40 pts)
The goal of this exercise is to understand the behavior of the sequence xn = 2n in
Z/40Z.

1. (3 pts) Why cannot we say that xn is periodic mod 40 “as usual”?

2. (12 pts) Find a formula for the values of xn mod 5 in terms of n. You answer
should have the form “if n is like this, then xn = this; if n is like that, then
xn = that; if …”.
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3. (10 pts) Find a formula for the values of xn mod 8 in terms of n.
Hint: Compute xn for n ⩽ 4 “by hand”.

4. (15 pts) Deduce a formula for xn mod 40. What is the period? What is the
length of the “tail”?
Hint: 中国剩余定理.

Solution 6.3:
1. We know that the sequence 1, x, x2, · · · is periodic for all x ∈ (Z/NZ)×, but

2 is not invertible mod 40 (their gcd is 2) so this argument does not apply.

2. Now 2 is invertible mod 5, so we know that 2n mod 5 is periodic, of period
dividing ϕ(5) = 4 by FlT. Let us see: in Z/5Z, we have x0 = 1, x1 = 2,
x2 = 4 = −1, x3 = −2, and x4 = −4 = 1 = x0. So the period is exactly 4 (in
other words 2 is a primitive root in Z/5Z) and

xn mod 5 =


1 if n ≡ 0 mod 4,
2 if n ≡ 1 mod 4,

−1 if n ≡ 2 mod 4,
−2 if n ≡ 3 mod 4.

3. Since 2 is not invertible mod 8, the theory seen in class does not apply. Let
us compute a few terms anyway. Mod 8, we have x0 = 1, x1 = 2, x2 = 4, and
x3 = 8 = 0. So xn ≡ 0 mod 8 for all n ⩾ 3. Thus

xn mod 8 =


1 if n = 0
2 if n = 1,
4 if n = 2,
0 if n ⩾ 3.

4. The hint is to use CRT. Indeed, for n ⩾ 3 we have xn ≡ 0 mod 8 whereas
xn mod 5 is given by the formula found in question 2. By putting this infor-
mation together, we can deduce xn mod 40 for n ⩾ 3; and for n < 3 we can
just compute xn by hand. We find

xn mod 40 =



1 if n = 0
2 if n = 1,
4 if n = 2,
8 if n ⩾ 3 and n ≡ 3 mod 4,
16 if n ⩾ 3 and n ≡ 0 mod 4,
32 if n ⩾ 3 and n ≡ 1 mod 4,
24 if n ⩾ 3 and n ≡ 2 mod 4.

We see that we have a tail of length 3, after which we enter a cycle of length 4.

16 // 32

��
8

OO

24oo

4

OO

2

OO

1oo
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The exercises below are not mandatory. They are not worth any
points, and are given here for you to practice. The solutions will be
made available with the solutions to the other exercises.

Exercise 6.4: More primitive roots
1. Find a primitive root for Z/7Z. Justify your answer in detail.

2. Same question for Z/11Z.

3. Same question for Z/23Z.

Solution 6.4:
1. Fermat’s little theorem tells us that every x ∈ (Z/7Z)× has order dividing

7− 1 = 6 = 2× 3. Therefore, x is a primitive root iff. it satisfies x2 ̸= 1 and
x3 ̸= 1.
Let us try x = 2. We have 22 = 4 ̸= 1, but 23 = 8 = 1 so 2 is not a primitive
root (in fact, since 2 ̸= 1 it does not have order 1, and since 3 is prime, the
identity 23 = 1 tells us that the multiplicative order of 2 is 3).
Let us try again, with x = 3. We find 32 = 9 ̸= 1 and 33 = 27 = −1 ̸= 1, so 3
is a primitive root.
Remark: we know that there are in fact ϕ(6) = 2 primitive roots; the other
one is 3−1 = 5.

2. We have 11− 1 = 10 = 2× 5, so we are looking for an x ̸= 0 such that x2 ̸= 1
and x5 ̸= 1.
Let us try x = 2. This time we are luckier: we have 22 = 4 ̸= 1 and 25 = 32 =
−1 ≠ 1, so 2 is a primitive root.
Remark: we know that there are in fact ϕ(10) = 4 primitive roots; they are
the 2m where m ∈ (Z/10Z)∗, in other words, 2, 8, 7, and 6.

3. We have 23−1 = 22 = 2×11, so we are looking for an x ̸= 0 such that x2 ̸= 1
and x11 ̸= 1.
Let us try x = 2. Bad luck: we have 22 = 4 ̸= 1, but 211 = 1, so 2 is a not
primitive root.
Let us try again with x = 3: we have 32 = 9 ̸= 1, but again 311 = 1, so 3 is
not a primitive root either.
The next value is x = 4, however we can see directly that 411 = (22)11 = 222 =
(211)2 = 1, so 4 is not going to work either.
But let us not give up! For x = 5 we have 52 = 25 = 2 ̸= 1, and 511 = −1 ̸= 1,
so 5 is a primitive root.
Remark: we know that there are in fact ϕ(22) = 10 primitive roots; they are
the 5m where m ∈ (Z/22Z)∗. Also, to compute x11, it is a good idea to write
something like x11 = x× (x5)2, and to reduce mod 23 at every step.

Final remarks: in Z/pZ, we can only have x2 = 1 when x = ±1. So as long as
we did not consider x = −1 (x = 1 would be really too silly), we didn’t have to care
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about x2 being ̸= 1. Also, we have x
p−1
2 =

(
x
p

)
= ±1; this explains why x

p−1
2 = −1

whenever x is a primitive root.

Exercise 6.5: Even more primitive roots
Let p ∈ N be prime, and let g ∈ (Z/pZ)× be a primitive root.

1. Let a ∈ Z. Give a necessary and sufficient condition on a for ga to be a
primitive root in Z/pZ.

2. Prove that if a is prime, then ga is a primitive root in Z/pZ if and only if
p ̸≡ 1 (mod a).

3. Show that the previous assertion is no longer valid when a is not assumed to
be prime, by finding a counterexample.

4. Is every primitive root of Z/pZ of the form ga for some a ∈ Z? Justify your
answer.

Solution 6.5:
1. By definition of g, the multiplicative order of g is p− 1. As a consequence, for

every a the multiplicative order of ga is p−1
gcd(p−1,a)

. Therefore, ga is a primitive
root iff. a and p− 1 are coprime.

2. By the previous question, ga is a primitive root iff. p − 1 and a are coprime.
Since a is prime, this is equivalent to a not dividing p− 1, which is equivalent
to p not being congruent to 1 mod a.

3. In view of the previous questions, we will get a counterexample if we can find
a and p such that a does not divide p− 1 and yet gcd(a, p− 1) ̸= 1, i.e. such
that 1 < gcd(p− 1, a) < a.
So for instance we can take a = 4, p = 7. Indeed, we then have that p ̸ equiv1
(mod a), and yet the multiplicative order of ga is 6

gcd(4,6) = 3 < 6. (To be
even more concrete, we can take g = 3 as in the previous exercise, and then
ga = 34 = 81 = 11 = 4 is not a primitive element since 43 = 64 = 1+ 63 = 1.)

4. Yes, simply because by definition of primitive roots, every nonzero element of
Z/pZ, primitive root or not, is of the form ga for some a ∈ N.

Exercise 6.6
Prove that 23n+5 + 3n+1 is divisible by 5 for all n ∈ N.

Solution 6.6
Since 2 ∈ (Z/5Z)×, its multiplicative order mod 5 is a divisor of 4 (in fact, it can be
checked by the methods of exercise 4.1 that its order is exactly 4, i.e. 2 is a primitive
root mod 5), so 2m mod 5 only depends on m mod 4. And since 3n+ 5 mod 4 only
depends on n mod 4, we have that 23n+5 mod 5 only depends on n mod 4.

Similarly, the multiplicative order of 3 mod 5 divides 4 (its in is fact again exactly
4), so 3m mod 5 only depends on m mod 4, and so 3n+1 mod 5 only depends on
n mod 4. As a result, the expression 23n+5 + 3n+1 mod 5 only depends on n mod 4.
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Thus all we have to do is check that 23n+5 + 3n+1 ≡ 0 (mod 5) for 4 values of n
representing all 4 elements of Z/4Z, such as 0, 1, 2, 3, or even cleverer, −1, 0, 1, 2.

Other solution: instead of checking for 4 values of n, which is easy but still a bit
tedious, we can directly compute that 3n+ 5 ≡ −n+ 1 mod 4, so that

23n+5 ≡ 2−n+1 ≡ 2× 3n (mod 5)

since 3 is the inverse of 2 mod 5; as a result, we have

23n+5 + 3n+1 ≡ 2× 3n + 3× 3n = 5× 3n ≡ 0 (mod 5).

Exercise 6.7: Another really big number
Compute the remainder of 1621000 when divided by 7.

Solution 6.7:
We want to reduce 162

1000 mod 7.
We have 16 ≡ 2 (mod 7), so 162

1000 ≡ 22
1000

(mod 7). Next, we see that 23 ≡ 1
(mod 7), so 2m mod 7 only depends on m mod 3 (we are using the fact that the
multiplicative order of 2 mod 7 divides 3; actually it is exactly 3). So we want to
reduce 21000 mod 3. This is easy: we have 2 ≡ −1 (mod 3), so 21000 ≡ (−1)1000 ≡ 1
(mod 3). Conclusion:

162
1000 ≡ 22

1000 ≡ 21 ≡ 2 (mod 7),

so the remainder is 2.

Exercise 6.8: Possible orders
1. Let n ∈ N. Explain why the additive order of any x ∈ Z/nZ is a divisor of n,

and prove that for any d | n, there exists an x ∈ Z/nZ of order d.

2. Let p ∈ N be a prime. Explain why the multiplicative order of any x ∈
(Z/pZ)× is a divisor of p − 1, and prove that for any d | (p − 1), there exists
an x ∈ (Z/pZ)× of multiplicative order d.

3. Let n ∈ N. Is it true that for any d | ϕ(n), there exists an x ∈ (Z/nZ)× of
multiplicative order d?

4. Suppose that n ∈ N, and that there exists an x ∈ (Z/nZ)× of multiplicative
order n− 1. Prove that n must be prime.

Solution 6.8:
1. For all x, we have nx = 0x = 0 so the additive order of x divides n. If d | n,

then we can consider x = n
d
∈ Z/nZ, and it is clear that mx = 0 ∈ Z/nZ

precisely when d | m, so this x is of additive order exactly d.

2. By Fermat’s little theorem, the multiplicative order of x divides ϕ(p), and
ϕ(p) = p− 1 since p is prime. Let now g ∈ (Z/pZ)× be a primitive root (there
exists at least one since p is prime), then by definition gm = 1 iff. (p− 1) | m.
So if d | (p− 1), then x = g

p−1
d satisfies

xm = 1 ⇐⇒ g
p−1
d

m = 1 ⇐⇒ (p− 1) | p− 1

d
m ⇐⇒ d | m,

which shows that the multiplicative order of x is exactly d.
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3. No. In fact, this is false when d = ϕ(n): in this case, such x are precisely
primitve roots, and those do not exist for most n.

4. Since x ∈ (Z/nZ)× is invertible, all its powers are also invertible (of inverse
the same power of the inverse of x). But x has multiplicative order n− 1, so
the sequence of its power is periodic of period exactly n − 1, so x has n − 1
distinct powers. So we have at least n− 1 invertibles in Z/nZ. But in Z/nZ
there are n elements, and clearly 0 cannot be invertible1, so we see that all
nonzero elements of Z/nZ are invertible. This means that Z/nZ is a field, so
n must be prime.

1Well, technically 0 is invertible in Z/1Z. But on the other hand, the order of any element is
at least 1, so n− 1 ⩾ 1 so we must have n ⩾ 2 in this exercise. But I should have made that clear
in the question.
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