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Version: September 27, 2018

Answers are due for Wednesday 26 September, 11AM.

The use of calculators is allowed.

Exercise 2.1: ax+ by (20 pts)
1. (10 pts) When I, J ⊂ Z are two subsets of Z, we denote by

I + J = {i+ j | i ∈ I, j ∈ J}

the set of integers that can be written as the sum of an element of I and of an
element of J .

Prove that if I and J are ideals of Z, then I + J is also an ideal of Z.

Hint: i+ j + i′ + j′ = i+ i′ + j + j′.

2. (10 pts) Let now a, b ∈ N. By the previous question, aZ+ bZ is an ideal, so it
is of the form cZ for some c ∈ N. Express c in terms of a and b. What is the
name of the theorem that we thus recover?

Hint: If you are lost, write an English sentence describing the set aZ + bZ.

Solution 2.1:
1. We have to check that I + J has the 3 properties required to be an ideal.

• Since I and J are ideals, they are not empty, so we can find i ∈ I and
j ∈ J . Then i+ j ∈ I + J , so I + J is not empty.

• Let x, y ∈ I + J . By definition of I + J , we can write x = i + j and
y = i′ + j′, with i, i′ ∈ I and j, j′ ∈ J . Then x + y = i + j + i′ + j′ =
(i + i′) + (j + j′) ∈ I + J since i + i′ ∈ I (because I is an ideal) and
j + j′ ∈ J (because J is an ideal).

• Finally, let x ∈ I + J and n ∈ Z. Again, we have x = i + j with i ∈ I
and j ∈ J , and then nx = ni + nj ∈ I + J since ni ∈ I (because I is an
ideal) and nj ∈ J (because J is an ideal).

2. aZ is the set of numbers of the form ax (x ∈ Z), and bZ is the set of numbers
of the form by (y ∈ Z), so aZ + bZ is the set of numbers of the form ax+ by,
and Bézout tells us that these numbers are exactly the multiples of gcd(a, b).
So we have

aZ + bZ = gcd(a, b)Z,
and this identity is exactly (the strong version of) Bézout’s theorem.
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Exercise 2.2: Min-max (40 pts)
Let a, b ∈ N. We may write

a =
r∏

i=1

pvii , b =
r∏

i=1

pwi
i

with the same (pairwise distinct) primes pi, by allowing vi, wi ≥ 0.

1. (10 pts) Express gcd(a, b) and lcm(a, b) in terms of the pi, vi, and wi.

2. (10 pts) Let v, w be two numbers. Prove carefully that min(v, w)+max(v, w) =
v + w (including the case v = w).

3. (10 pts) Deduce from the previous questions a proof of the formula

gcd(a, b) lcm(a, b) = ab.

4. (10 pts) Find lcm(543, 210) (you may use results from last week’s exercise
sheet).

Solution 2.2:
1. Let g = gcd(a, b). We know that vp(g) = min

(
vp(a), vp(b)

)
for all p, which

is min(vi, wi) if p is one of the pi, and 0 else. Since we also know that g is a
positive number, we can conclude that

gcd(a, b) = +
∏

p prime

pvp(g) =
r∏

i=1

p
min(vi,wi)
i .

Similarly, we find that

lcm(a, b) = +
∏

p prime

pvp(g) =
r∏

i=1

p
max(vi,wi)
i .

2. Let us define m = min(v, w) and M = max(v, w). We distinguish 3 cases:

• If v < w, then m = v, M = w, so m+M = v + w.

• If v > w, then m = w, M = v, so again m+M = v + w.

• Finally, if v = w, then m = M = v = w, so again m+M = v + w.

Either way, we have m+M = v + w.

3. We have

gcd(a, b) lcm(a, b) =

(
r∏

i=1

p
min(vi,wi)
i

)(
r∏

i=1

p
max(vi,wi)
i

)

=
r∏

i=1

p
min(vi,wi)+max(vi,wi)
i

=
r∏

i=1

pvi+wi
i by the previous question

=

(
r∏

i=1

pvii

)(
r∏

i=1

pwi
i

)
= ab.
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Exercise 2.3: Divisors (40 pts)
The three questions of this exercise are independent of each other. The last one is
difficult.

1. (15 pts) Let N = 1200. Find the number of positive divisors of N , the sum of
these divisors, and the sum of the squares of these divisors.

2. (20 pts) Find an integer M of the form 3a5b such that the sum of the positive
divisors of M is 33883.

Hint: 33883 = 31× 1093, and both factors are prime.

3. (5 pts) Find an integer L of the form 2a3b such that the product of the divisors
of L is 1215.

Hint: What are the divisors of L? Can you arrange them in a 2-dimensional
array? Count the number of 2’s, and deduce that the 2-adic valuation the
product of all these divisors is (b + 1)(1 + 2 + 3 + · · · + a). What about the
3-adic valuation?

Solution 2.3:
1. The factorization of N is N = 243152, so

• σ0(N) = (1 + 4)(1 + 1)(1 + 2) = 30,

• σ1(N) = (1 + 2 + 22 + 23 + 24)(1 + 3)(1 + 5 + 52) = 3844,

• and σ2(N) = (1 + 22 + 24 + 26 + 28)(1 + 32)(1 + 52 + 54) = 2219910.

2. (20 pts) Clearly, finding M is equivalent to finding a and b. So we are looking
for integers a, b ≥ 0 such that

(1 + 3 + · · ·+ 3a)(1 + 5 + · · ·+ 5b) = 31× 1093.

Since 13 and 1093 are prime, either one of the factors is 31 and the other is
1093, or one is 1 and the other is 33883.

By trying the values b = 0, 1, · · · , 7 (or better, by using 1 + 5 + · · · + 5b =
(5b+1 − 1)/4 to find b), we see that 33883 is not of the form 1 + 5 + · · · + 5b,
and similarly we see that 33883 is not of the form 1 + 3 + · · ·+ 3a either.

So we must have either 1 + 3 + · · · + 3a = 31 and 1 + 5 + · · · + 5b = 1093, or
the other way round. In the first case, we find again no solution; in the second
case, we find the unique solution a = 6, b = 2.

As a conclusion, the only solution is M = 3652.

3. Again, we have to find a and b. The divisors of L are the 2x3y for 0 ≤ x ≤ a
and 0 ≤ y ≤ b. Let us multiply all of them, by order of increasing x.
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• For x = 0, we are multiplying the b + 1 divisors 1, 3, · · · , 3b; these con-
tribute no power of 2.

• For x = 1, we are multiplying the b + 1 divisors 2, 2 · 3, · · · , 2 · 3b; each
contributes one factor 2, so in total they contribute b+ 1 factors 2.

• For x = 2, we are multiplying the divisors 22, 22 · 3, · · · , 22 · 3b; each
contributes two factors 2, so in total they contribute 2(b+ 1) factors 2.

• ...

• For x = a, we are multiplying the b+1 divisors divisors 2a, 2a·3, · · · , 2a·3b;
each contributes a factors 2, so in total they contribute a(b + 1) factors
2.

So in total we have 0+(b+1)+2(b+1)+ · · ·+a(b+1) = (b+1)(1+2+ · · ·+a)
factors 2.

Similarly, in total we have (a+ 1)(1 + 2 + · · ·+ b) factors 3, so the product of
the divisors of L is

2(b+1)(1+2+···+a)3(a+1)(1+2+···+b).

We want this to be 1215 = 230315, so by unicity of the factorization we must
solve the system {

(b+ 1)(1 + 2 + · · ·+ a) = 30,
(a+ 1)(1 + 2 + · · ·+ b) = 15.

Since 15 = 3 · 5 and 3 and 5 are prime, the second equation tells us that a+ 1
is either 1, 3, 5, or 15. Let us examine these cases separately.

• If a + 1 = 1, then a = 0 and 1 + 2 + · · · + b = 15, so b = 5, but then
(b+ 1)(1 + 2 + · · ·+ a) = 6 6= 30, so this does not work.

• If a+ 1 = 3, then 1 + 2 + · · ·+ b = 5, but there is no such b.

• If a+ 1 = 5, then a = 4 and 1 + 2 + · · ·+ b = 3, so b = 2, and then indeed
(b+ 1)(1 + 2 + · · ·+ a) = 30, so we have a solution.

• Finally, If a+ 1 = 15, then a = 14; but then (b+ 1)(1 + 2 + · · ·+ a) will
obviously be much more than 30, so this does no work either.

As a conclusion, the only such L is L = 2432.
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The exercise below has been added for practice. It is not mandatory,
and not worth any points. The solution will be made available with the
solutions to the other exercises.

Exercise 2.4:
√
n is either an integer or irrational

Let n be a positive integer which is not a square, so that
√
n is not an integer.

The goal of this exercise is to prove that
√
n is irrational, i.e. not of the form a

b

where a and b are integers.

1. Prove that there exists at least one prime p such that the p-adic valuation
vp(n) is odd.

2. Suppose on the contrary that
√
n = a

b
with a, b ∈ N; this may be rewritten as

a2 = nb2. Examine the p-adic valuations of both sides of this equation, and
derive a contradiction.

Solution 2.4:
1. Write the factorization of n as

∏
paii , where ai = vpi(n). If the ai were all

even, then the ai/2 would all be integers, and so we would have n = m2 with

m =
∏
p
ai/2
i , contradicting our hypothesis that n is not a square. So at least

one of the ai is odd, and we can take p to be the corresponding pi.

2. On the one hand, vp(a
2) = 2vp(a) is even; on the other hand, vp(nb

2) =
vp(n) + vp(b

2) = vp(n) + 2vp(b) is odd, since we have chosen p so that vp(n)
is odd. So the p-adic valuation of the integer a2 = nb2 is both even and odd,
which is absurd.
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