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Version: September 19, 2018

Answers are due for Wednesday 19 September, 11AM.

The use of calculators is allowed.

Exercise 1.1: An “obvious” factorisation (20 pts)
1. (10 pts) Let n ≥ 2 be an integer, and let N = n2− 1. Depending on the value

of n, N can be prime or not; for example N = 3 is prime if n = 2, but N = 8
is composite if n = 3. Find all n ≥ 2 such that N is prime.

Hint: a2 − b2 = ?

2. (10 pts) Factor N = 9999 into primes. Make sure to prove that the factors
you find are prime.

Solution 1.1:
1. We have N = n2 − 12 = (n + 1)(n − 1). Beware however that this does not

mean that N is composite, since one of the factors could be ±1! Since we are
assuming n ≥ 2, n + 1 can never be ±1; and we have n − 1 = ±1 only when
n = 2. As a result, N is prime only when n = 2.

2. By the same principle, 9999 = 10000−1 = 1002−1 = 99·101. Now 99 = 9·11 =
32 · 11, and 11 is prime (else it would be divisible by a prime ≤

√
11 ≈ 3.3,

but it is not divisible by 2 nor by 3. Similarly, if 101 were composite, if would
be divisible by a prime ≤

√
101 ≈ 10, so by 2, 3, 5, or 7. But

2 | 101 =⇒ 2 | (101− 100) = 1, absurd,

3 | 101 =⇒ 3 | (101− 99) = 2, absurd,

5 | 101 =⇒ 5 | (101− 100) = 1, absurd,

7 | 101 =⇒ 7 | (101− 70) = 31 =⇒ 7 | (35− 31) = 4, absurd.

So 101 is prime, and the complete factorisation of 9999 is

9999 = 32 · 11 · 101.

Remark: This illustrates the fact that (n + 1)(n − 1) is not in general the
complete factorisation of n2 − 1.
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Exercise 1.2: (In)variable gcd’s (20 pts)
Let n ∈ Z.

1. (10 pts) Prove that gcd(n, 2n + 1) = 1, no matter what the value of n is.

Hint: How do you prove that two integers are coprime?

2. (10 pts) What can you say about gcd(n, n + 2)?

Solution 1.2:
1. Remember that two integers a and b are coprime if and only if there exist

integers x and y such that ax + by = 1.

Since (n)(−2) + (2n + 1)(1) = 1, n and 2n + 1 are coprime.

2. Let g = gcd(n, n+ 2). By Strong Bézout, 2 = n(−1) + (n+ 2)(1) is a multiple
of g, so g can only be 1 or 2. Besides, if n = 2k is even, then so is n + 2 =
2k + 2 = 2(k + 1), and if n = 2k + 1 is odd, then so is n + 2 = 2(k + 1) + 1.
Conclusion: g = 2 if n is even, and g = 1 if n is odd.

Exercise 1.3: Euclid and Bézout (40 pts)
1. (10 pts) Compute g = gcd(543, 210), and find integers x, y such that

543x + 210y = g.

2. (10 pts) Find all x and y ∈ Z such that 543x + 210y = 261.

3. (10 pts) Find all x and y ∈ Z such that 543x + 210y = 2018.

4. (10 pts) (From last year’s midterm) How many different ways are there are to
pay $10000 using only banknotes of $20 and $50?

Hint: Why is this question in this exercise?

Solution 1.3:
1. To compute the gcd, Euclid’s algorithm goes as follows:

5 4 3
1 2 3

2 1 0
2

2 1 0
8 7

1 2 3
1

1 2 3
3 6

8 7
1

8 7
1 5

3 6
2

3 6
6

1 5
2
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1 5
3

6
2

6
0

3
2

The gcd is the last nonzero remainder, which is 3 in this case.

In order to find x and y, we read these divisions from the bottom up:

3 = 15− 6 · 2
= 15− (36− 15 · 2) · 2 = 15 · 5− 36 · 2
= (87− 36 · 2) · 5− 36 · 2 = 87 · 5− 36 · 12

= 87 · 5− (123− 87) · 12 = 87 · 17− 123 · 12

= (210− 123) · 17− 123 · 12 = 210 · 17− 123 · 29

= 210 · 17− (543− 210 · 2) · 29

= 210 · 75− 543 · 29,

so we can take x = −29, y = 75.

2. Since 261/3 = 87 is an integer, 3 | 261, so there are infinitely many solutions.
Thanks to the previous question, we have the solution x = −29 · 87 = −2523,
y = 75 · 87 = 6525. Besides, we can simplify the equation by 3, which yields

181x + 70y = 87;

and since 3 was the gcd, we know that 181 and 70 must be coprime, so that
we get all the solutions by adding a multiple of 70 to x, and subtracting the
same multiple of 181 from y. Therefore, the solutions are

x = −2523 + 70t, y = 6525− 181t (t ∈ Z).

Remark: We can use this formula to discover simpler solutions. For instance,
for t = 36 we find the solution x = −3, y = 9, which is much more appealing!
This also means that the general solution can also be described as x = −3+70t,
y = 9− 181t (t ∈ Z).

3. This time 3 - 2018, so there are no solutions.

4. This corresponds to finding the integer solutions of 20x + 50y = 10000. Since
gcd(20, 50) = 10 divides 10000, there are solutions, and the equation can be
simplified into

2x + 5y = 1000.

One solution is x = 500, y = 0, so the solutions are given by

x = 500− 5t, y = 2t, t ∈ Z.

But we also must have x > 0 and y > 0! In other words, 500 − 5t > 0, so
t 6 100, and 2t > 0, so t > 0. So the solutions with x > 0 and y > 0 are given
by the t ∈ Z such that 0 6 t 6 100. That is 101 ways.
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Exercise 1.4: Another algorithm for the gcd (20 pts)
1. (10 pts) Let a, b ∈ Z be integers. Prove that gcd(a, b) = gcd(b, a− b).

2. (10 pts) Use the previous question to design an algorithm to compute gcd(a, b)
similar to the one seen in class, but using subtractions instead of Euclidean
divisions. Demonstrate its use on the case a = 50, b = 22.

Solution 1.4:
1. If d divides a and b, then d also divides a − b. Conversely, if d divides b and

a− b, then it also divides b + (a− b) = a. Therefore, the two pairs (a, b) and
(b, a− b) have the same common divisors, and in particular the same gcd.

2. We can repeatedly replace the pair (a, b) and (b, a − b) so as to make its size
decrease until the gcd is obvious. For instance,

gcd(50, 22) = gcd(22, 50− 22) = gcd(28, 22)

= gcd(22, 28− 22) = gcd(22, 6)

= gcd(22− 6, 6) = gcd(16, 6)

= gcd(16− 6, 6) = gcd(10, 6)

= gcd(6, 10− 6) = gcd(6, 4)

= gcd(4, 6− 4) = gcd(4, 2)

= gcd(2, 4− 2) = gcd(2, 2)

= 2.

Remark: This is how Euclid’s original algorithm worked. The version with
Euclidean divisions seen in class is more efficient: if the division is a = bq+r,
it goes from (a, b) to (b, r) directly in one step, whereas this version takes (a, b)
to (b, a − b), then to (b, a − 2b), and so on, and thus takes q steps to reach
(b, r).

The exercises below are not mandatory. They are not worth any
points, but I highly recommend that you try to solve them for prac-
tice. The solutions will be made available with the solutions to the other
exercises.

Exercise 1.5
Let a, b and c be integers. Suppose that a and b are coprime, and that a and c are
coprime. Prove that a and bc are coprime.
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Solution 1.5
Suppose that d ∈ N is such that d | a and d | bc. Since d | a, d and b are coprime.
Indeed, a divisor of d is also a divisor of a, so a common divisor of d and b is a
common divisor of a and b, which can only be ±1 since a and b are coprime. We
can now conclude by Gauss’s lemma: since d | bc and d is coprime to b, we must
have d | c. So d is a common divisor of a and c; since a and c are coprime, d can
only be ±1. So the only common divisors of a and bc are ±1.

Here is an alternative, less obvious proof using Bézout: since a and b are coprime,
there are u and v ∈ Z such that au+ bv = 1. Similarly, there are u′ and v′ ∈ Z such
that au′ + cv′ = 1. By multiplying these identities, we get

1 = (au + bv)(au′ + cv′) = a(uau′ + ucv′ + bvu′) + bc(vv′).

This last identity has the form 1 = ax + (bc)y with x, y ∈ Z, which proves that a
and bc are coprime.

Exercise 1.6: Fermat numbers
Let n ∈ N, and let N = 2n + 1. Prove that if N is prime, then n must be a power
of 2.

Hint: use the identity xm + 1 = (x + 1)(xm−1 − xm−2 + · · · − x + 1), which is
valid for all odd m ∈ N.

Solution 1.6:
Suppose on the contrary that n is not a power of 2. Then n is divisible by at least
one odd prime. Let p be such a prime, and write n = pq with q ∈ N. We thus have

N = 2n + 1 = 2pq + 1 = (2q)p + 1 = (2q + 1)(2q(p−1) − 2q(p−2) + · · · − 2q + 1)

according to the hint, since p is odd.
In order to conclude that N is composite, it is therefore enough to prove that

none of these two factors is ±1. But clearly 2q + 1 > 1, and if we had 2q(p−1) −
2q(p−2) + · · · − 2q + 1 = ±1, then we would have 2pq + 1 = ±(2q + 1), which is clearly
impossible since p > 3. We have thus found a non-trivial factorization of N , so N
is composite.

Remark: The Fermat numbers are the Fn = 22n+1, n ∈ N. They are named after
the French mathematician Pierre de Fermat, who noticed that F0, F1, F2, F3 and F4

are all prime, and conjectured in 1650 that Fn is prime for all n ∈ N. However, this
turned out to be wrong: in 1732, the Swiss mathematician Leonhard Euler proved
that F5 = 641× 6700417 is not prime. To this day, no other prime Fermat number
has been found; in fact it is unknown if there is any ! This is because Fn grows very
quickly with n, which makes it very difficult to test whether Fn is prime, even with
modern computers.
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