Math 261 - Exercise sheet 1

http://staff.aub.edu.lb/~nm116/teaching/2018/math261/index.html
Version: September 19, 2018

Answers are due for Wednesday 19 September, 11AM.
The use of calculators is allowed.

Exercise 1.1: An "obvious" factorisation (20 pts)

1. (10 pts) Let $n \geq 2$ be an integer, and let $N=n^{2}-1$. Depending on the value of n, N can be prime or not; for example $N=3$ is prime if $n=2$, but $N=8$ is composite if $n=3$. Find all $n \geq 2$ such that N is prime.
Hint: $a^{2}-b^{2}=$?
2. (10 pts) Factor $N=9999$ into primes. Make sure to prove that the factors you find are prime.

Solution 1.1:

1. We have $N=n^{2}-1^{2}=(n+1)(n-1)$. Beware however that this does not mean that N is composite, since one of the factors could be ± 1 ! Since we are assuming $n \geq 2, n+1$ can never be ± 1; and we have $n-1= \pm 1$ only when $n=2$. As a result, N is prime only when $n=2$.
2. By the same principle, $9999=10000-1=100^{2}-1=99 \cdot 101$. Now $99=9 \cdot 11=$ $3^{2} \cdot 11$, and 11 is prime (else it would be divisible by a prime $\leq \sqrt{11} \approx 3.3$, but it is not divisible by 2 nor by 3 . Similarly, if 101 were composite, if would be divisible by a prime $\leq \sqrt{101} \approx 10$, so by $2,3,5$, or 7 . But

$$
\begin{gathered}
2|101 \Longrightarrow 2|(101-100)=1, \text { absurd } \\
3|101 \Longrightarrow 3|(101-99)=2, \text { absurd } \\
5|101 \Longrightarrow 5|(101-100)=1, \text { absurd } \\
7|101 \Longrightarrow 7|(101-70)=31 \Longrightarrow 7 \mid(35-31)=4, \text { absurd. }
\end{gathered}
$$

So 101 is prime, and the complete factorisation of 9999 is

$$
9999=3^{2} \cdot 11 \cdot 101
$$

Remark: This illustrates the fact that $(n+1)(n-1)$ is not in general the complete factorisation of $n^{2}-1$.

Exercise 1.2: (In)variable gcd's (20 pts)

Let $n \in \mathbb{Z}$.

1. (10 pts) Prove that $\operatorname{gcd}(n, 2 n+1)=1$, no matter what the value of n is.

Hint: How do you prove that two integers are coprime?
2. (10 pts) What can you say about $\operatorname{gcd}(n, n+2)$?

Solution 1.2:

1. Remember that two integers a and b are coprime if and only if there exist integers x and y such that $a x+b y=1$.
Since $(n)(-2)+(2 n+1)(1)=1, n$ and $2 n+1$ are coprime.
2. Let $g=\operatorname{gcd}(n, n+2)$. By Strong Bézout, $2=n(-1)+(n+2)(1)$ is a multiple of g, so g can only be 1 or 2 . Besides, if $n=2 k$ is even, then so is $n+2=$ $2 k+2=2(k+1)$, and if $n=2 k+1$ is odd, then so is $n+2=2(k+1)+1$. Conclusion: $g=2$ if n is even, and $g=1$ if n is odd.

Exercise 1.3: Euclid and Bézout (40 pts)

1. (10 pts) Compute $g=\operatorname{gcd}(543,210)$, and find integers x, y such that

$$
543 x+210 y=g
$$

2. (10 pts) Find all x and $y \in \mathbb{Z}$ such that $543 x+210 y=261$.
3. (10 pts) Find all x and $y \in \mathbb{Z}$ such that $543 x+210 y=2018$.
4. (10 pts) (From last year's midterm) How many different ways are there are to pay $\$ 10000$ using only banknotes of $\$ 20$ and $\$ 50$?
Hint: Why is this question in this exercise?

Solution 1.3:

1. To compute the gcd, Euclid's algorithm goes as follows:

5	4	3	21
	2	3	2

21	1	123
	7	1

| 123 | 87 |
| ---: | ---: | ---: |
| | 1 |

87	36	
	5	2

36	15
	2

$$
\begin{array}{r|r}
15 & 6 \\
\cline { 2 - 3 } & 2 \\
6 & 3 \\
\cline { 2 - 3 } & 2
\end{array}
$$

The gcd is the last nonzero remainder, which is 3 in this case.
In order to find x and y, we read these divisions from the bottom up:

$$
\begin{aligned}
3 & =15-6 \cdot 2 \\
& =15-(36-15 \cdot 2) \cdot 2=15 \cdot 5-36 \cdot 2 \\
& =(87-36 \cdot 2) \cdot 5-36 \cdot 2=87 \cdot 5-36 \cdot 12 \\
& =87 \cdot 5-(123-87) \cdot 12=87 \cdot 17-123 \cdot 12 \\
& =(210-123) \cdot 17-123 \cdot 12=210 \cdot 17-123 \cdot 29 \\
& =210 \cdot 17-(543-210 \cdot 2) \cdot 29 \\
& =210 \cdot 75-543 \cdot 29,
\end{aligned}
$$

so we can take $x=-29, y=75$.
2. Since $261 / 3=87$ is an integer, $3 \mid 261$, so there are infinitely many solutions. Thanks to the previous question, we have the solution $x=-29 \cdot 87=-2523$, $y=75 \cdot 87=6525$. Besides, we can simplify the equation by 3 , which yields

$$
181 x+70 y=87
$$

and since 3 was the gcd, we know that 181 and 70 must be coprime, so that we get all the solutions by adding a multiple of 70 to x, and subtracting the same multiple of 181 from y. Therefore, the solutions are

$$
x=-2523+70 t, y=6525-181 t \quad(t \in \mathbb{Z})
$$

Remark: We can use this formula to discover simpler solutions. For instance, for $t=36$ we find the solution $x=-3, y=9$, which is much more appealing! This also means that the general solution can also be described as $x=-3+70 t$, $y=9-181 t(t \in \mathbb{Z})$.
3. This time $3 \nmid 2018$, so there are no solutions.
4. This corresponds to finding the integer solutions of $20 x+50 y=10000$. Since $\operatorname{gcd}(20,50)=10$ divides 10000 , there are solutions, and the equation can be simplified into

$$
2 x+5 y=1000
$$

One solution is $x=500, y=0$, so the solutions are given by

$$
x=500-5 t, y=2 t, t \in \mathbb{Z}
$$

But we also must have $x \geqslant 0$ and $y \geqslant 0$! In other words, $500-5 t \geqslant 0$, so $t \leqslant 100$, and $2 t \geqslant 0$, so $t \geqslant 0$. So the solutions with $x \geqslant 0$ and $y \geqslant 0$ are given by the $t \in \mathbb{Z}$ such that $0 \leqslant t \leqslant 100$. That is 101 ways.

Exercise 1.4: Another algorithm for the gcd (20 pts)

1. $(10 \mathrm{pts})$ Let $a, b \in \mathbb{Z}$ be integers. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)$.
2. (10 pts) Use the previous question to design an algorithm to compute $\operatorname{gcd}(a, b)$ similar to the one seen in class, but using subtractions instead of Euclidean divisions. Demonstrate its use on the case $a=50, b=22$.

Solution 1.4:

1. If d divides a and b, then d also divides $a-b$. Conversely, if d divides b and $a-b$, then it also divides $b+(a-b)=a$. Therefore, the two pairs (a, b) and ($b, a-b$) have the same common divisors, and in particular the same gcd.
2. We can repeatedly replace the pair (a, b) and $(b, a-b)$ so as to make its size decrease until the gcd is obvious. For instance,

$$
\begin{aligned}
\operatorname{gcd}(50,22) & =\operatorname{gcd}(22,50-22)=\operatorname{gcd}(28,22) \\
& =\operatorname{gcd}(22,28-22)=\operatorname{gcd}(22,6) \\
& =\operatorname{gcd}(22-6,6)=\operatorname{gcd}(16,6) \\
& =\operatorname{gcd}(16-6,6)=\operatorname{gcd}(10,6) \\
& =\operatorname{gcd}(6,10-6)=\operatorname{gcd}(6,4) \\
& =\operatorname{gcd}(4,6-4)=\operatorname{gcd}(4,2) \\
& =\operatorname{gcd}(2,4-2)=\operatorname{gcd}(2,2) \\
& =2 .
\end{aligned}
$$

Remark: This is how Euclid's original algorithm worked. The version with Euclidean divisions seen in class is more efficient: if the division is $a=b q+r$, it goes from (a, b) to (b, r) directly in one step, whereas this version takes (a, b) to $(b, a-b)$, then to $(b, a-2 b)$, and so on, and thus takes q steps to reach (b,r).

The exercises below are not mandatory. They are not worth any points, but I highly recommend that you try to solve them for practice. The solutions will be made available with the solutions to the other exercises.

Exercise 1.5

Let a, b and c be integers. Suppose that a and b are coprime, and that a and c are coprime. Prove that a and $b c$ are coprime.

Solution 1.5

Suppose that $d \in \mathbb{N}$ is such that $d \mid a$ and $d \mid b c$. Since $d \mid a, d$ and b are coprime. Indeed, a divisor of d is also a divisor of a, so a common divisor of d and b is a common divisor of a and b, which can only be ± 1 since a and b are coprime. We can now conclude by Gauss's lemma: since $d \mid b c$ and d is coprime to b, we must have $d \mid c$. So d is a common divisor of a and c; since a and c are coprime, d can only be ± 1. So the only common divisors of a and $b c$ are ± 1.

Here is an alternative, less obvious proof using Bézout: since a and b are coprime, there are u and $v \in \mathbb{Z}$ such that $a u+b v=1$. Similarly, there are u^{\prime} and $v^{\prime} \in \mathbb{Z}$ such that $a u^{\prime}+c v^{\prime}=1$. By multiplying these identities, we get

$$
1=(a u+b v)\left(a u^{\prime}+c v^{\prime}\right)=a\left(u a u^{\prime}+u c v^{\prime}+b v u^{\prime}\right)+b c\left(v v^{\prime}\right) .
$$

This last identity has the form $1=a x+(b c) y$ with $x, y \in \mathbb{Z}$, which proves that a and $b c$ are coprime.

Exercise 1.6: Fermat numbers

Let $n \in \mathbb{N}$, and let $N=2^{n}+1$. Prove that if N is prime, then n must be a power of 2 .

Hint: use the identity $x^{m}+1=(x+1)\left(x^{m-1}-x^{m-2}+\cdots-x+1\right)$, which is valid for all odd $m \in \mathbb{N}$.

Solution 1.6:

Suppose on the contrary that n is not a power of 2 . Then n is divisible by at least one odd prime. Let p be such a prime, and write $n=p q$ with $q \in \mathbb{N}$. We thus have

$$
N=2^{n}+1=2^{p q}+1=\left(2^{q}\right)^{p}+1=\left(2^{q}+1\right)\left(2^{q(p-1)}-2^{q(p-2)}+\cdots-2^{q}+1\right)
$$

according to the hint, since p is odd.
In order to conclude that N is composite, it is therefore enough to prove that none of these two factors is ± 1. But clearly $2^{q}+1>1$, and if we had $2^{q(p-1)}-$ $2^{q(p-2)}+\cdots-2^{q}+1= \pm 1$, then we would have $2^{p q}+1= \pm\left(2^{q}+1\right)$, which is clearly impossible since $p \geqslant 3$. We have thus found a non-trivial factorization of N, so N is composite.

Remark: The Fermat numbers are the $F_{n}=2^{2^{n}}+1, n \in \mathbb{N}$. They are named after the French mathematician Pierre de Fermat, who noticed that $F_{0}, F_{1}, F_{2}, F_{3}$ and F_{4} are all prime, and conjectured in 1650 that F_{n} is prime for all $n \in \mathbb{N}$. However, this turned out to be wrong: in 1732, the Swiss mathematician Leonhard Euler proved that $F_{5}=641 \times 6700417$ is not prime. To this day, no other prime Fermat number has been found; in fact it is unknown if there is any! This is because F_{n} grows very quickly with n, which makes it very difficult to test whether F_{n} is prime, even with modern computers.

