Math 261 - Exercise sheet 1

http://staff.aub.edu.lb/~nm116/teaching/2018/math261/index.html
Version: September 10, 2018

Answers are due for Wednesday 19 September, 11AM.
The use of calculators is allowed.

Exercise 1.1: An "obvious" factorisation (20 pts)

1. (10 pts) Let $n \geq 2$ be an integer, and let $N=n^{2}-1$. Depending on the value of n, N can be prime or not; for example $N=3$ is prime if $n=2$, but $N=8$ is composite if $n=3$. Find all $n \geq 2$ such that N is prime.
Hint: $a^{2}-b^{2}=$?
2. (10 pts) Factor $N=9999$ into primes. Make sure to prove that the factors you find are prime.

Exercise 1.2: (In)variable gcd's (20 pts)

Let $n \in \mathbb{Z}$.

1. (10 pts) Prove that $\operatorname{gcd}(n, 2 n+1)=1$, no matter what the value of n is.

Hint: How do you prove that two integers are coprime?
2. (10 pts) What can you say about $\operatorname{gcd}(n, n+2)$?

Exercise 1.3: Euclid and Bézout (40 pts)

1. (10 pts) Compute $g=\operatorname{gcd}(543,210)$, and find integers x, y such that

$$
543 x+210 y=g
$$

2. (10 pts) Find all x and $y \in \mathbb{Z}$ such that $543 x+210 y=261$.
3. (10 pts) Find all x and $y \in \mathbb{Z}$ such that $543 x+210 y=2018$.
4. (10 pts) (From last year's midterm) How many different ways are there are to pay $\$ 10000$ using only banknotes of $\$ 20$ and $\$ 50$?
Hint: Why is this question in this exercise?

Exercise 1.4: Another algorithm for the gcd (20 pts)

1. (10 pts) Let $a, b \in \mathbb{Z}$ be integers. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)$.
2. (10 pts) Use the previous question to design an algorithm to compute $\operatorname{gcd}(a, b)$ similar to the one seen in class, but using subtractions instead of Euclidean divisions. Demonstrate its use on the case $a=50, b=22$.

The exercises below are not mandatory. They are not worth any points, but I highly recommend that you try to solve them for practice. The solutions will be made available with the solutions to the other exercises.

Exercise 1.5

Let a, b and c be integers. Suppose that a and b are coprime, and that a and c are coprime. Prove that a and $b c$ are coprime.

Exercise 1.6: Fermat numbers

Let $n \in \mathbb{N}$, and let $N=2^{n}+1$. Prove that if N is prime, then n must be a power of 2 .

Hint: use the identity $x^{m}+1=(x+1)\left(x^{m-1}-x^{m-2}+\cdots-x+1\right)$, which is valid for all odd $m \in \mathbb{N}$.

Remark: The Fermat numbers are the $F_{n}=2^{2^{n}}+1, n \in \mathbb{N}$. They are named after the French mathematician Pierre de Fermat, who noticed that $F_{0}, F_{1}, F_{2}, F_{3}$ and F_{4} are all prime, and conjectured in 1650 that F_{n} is prime for all $n \in \mathbb{N}$. However, this turned out to be wrong: in 1732, the Swiss mathematician Leonhard Euler proved that $F_{5}=641 \times 6700417$ is not prime. To this day, no other prime Fermat number has been found; in fact it is unknown if there is any! This is because F_{n} grows very quickly with n, which makes it very difficult to test whether F_{n} is prime, even with modern computers.

