Math 261 — Exam 1

October 4, 2017

The use of calculators, notes, and books is **NOT** allowed.

Exercise 1: Since today is October 4th... (10 pts)

- 1. (4 pts) Compute the factorization of 104 into primes.
- 2. (6 pts) Deduce the number of divisors of 104, the sum of these divisors, and the value of $\phi(104)$.

Solution 1:

1. Clearly, 104 is even, so we divide it by 2. We get $104 = 2 \times 52$, and 52 is again even, so we keep going... we finally get $104 = 2^3 \times 13$. Now, 13 is prime (if it were not, it would be divisible by a prime $\leq \sqrt{13} < 4$, so by 2 or 3, but it isn't), so this is the complete factorization of 104:

$$104 = 2^3 \times 13.$$

2. The number of divisors is thus

$$\sigma_0(104) = (1+3)(1+1) = 8,$$

the sum of these divisors is

$$\sigma_1(104) = (1+2+4+8)(1+13) = 15 \times 14 = 210$$

and finally

$$\phi(104) = 104(1 - 1/2)(1 - 1/13) = 104\frac{1}{2}\frac{12}{13} = \frac{104}{13}6 = 8 \times 6 = \boxed{48}.$$

Exercise 2: Consecutive composites (16 pts)

- 1. (4 pts) Find 5 consecutive composite (i.e. not prime) integers \leq 100.
- $2.\ (12\ \mathrm{pts})$ Find 2017 consecutive composite integers.

Hint: consider numbers of the form n! + m, where $n, m \in \mathbb{N}$, $m \leq n$, and $n! = 1 \times 2 \times 3 \times \cdots \times n$.

Solution 2:

- 1. The smallest solution is 24, 25, 26, 27, 28. This is not the only one; for instance, 32, 33, 34, 35, 36 also works.
- 2. (12 pts) If $m \le n$, then m divides $n! = 1 \times 2 \times 3 \times \cdots \times m \times \cdots \times n$, so $m \mid (n! + m)$. Since n! + m > m, if $m \ne 1$ this implies that n! + m is composite. So the integers

$$n! + 2, n! + 3, \cdots, n! + n$$

are all composite, and of course they are consecutive. Since this sequence contains n-1 integers, and we want a sequence of length 2017, we take n=2018, and get

$$2018! + 2$$
, $2018! + 3$, \cdots , $2018! + 2018$.

Remark: These integers have 5795 digits each!

Exercise 3: Making change (11 pts)

- 1. (8 pts) Find all integers $x, y \in \mathbb{Z}$ such that 20x + 50y = 10000.
- 2. (3 pts) Deduce how many different ways there are to pay \$10000 using only banknotes of \$20 and \$50.

Solution 3:

1. Since gcd(20, 50) = 10 divides 10000, there are solutions, and the equation can be simplified into

$$2x + 5y = 1000.$$

One solution is x = 500, y = 0, so the solutions are given by

$$x = 500 - 5t, \ y = 2t, \ t \in \mathbb{Z}.$$

2. This corresponds to finding the solutions of the above equation with $x \ge 0$ and $y \ge 0$. In other words, we need $500 - 5t \ge 0$, so $t \le 100$, and $2t \ge 0$, so $t \ge 0$. So the solutions with $x \ge 0$ and $y \ge 0$ are given by the $t \in \mathbb{Z}$ such that $0 \le t \le 100$. There are thus 101 ways.

2

Exercise 4: Only 2 (20 pts)

Find all $n \in \mathbb{N}$ such that $\phi(n) = 2$.

Solution 4:

Clearly n=1 does not work, so we can consider a prime divisor p of n. We can write $n=p^v m$, where $v=v_p(n)\in\mathbb{N}$ and m is coprime to p^v ; then, since ϕ is multiplicative, we have

$$2 = \phi(n) = \phi(p^{v})\phi(m) \geqslant \phi(p^{v}) = (p-1)p^{v-1} \geqslant p-1,$$

so necessarily $p \leq 3$. Thus the only possible prime divisors of n are 2 and 3.

If $n=2^a$, then as $\phi(n)=2^{a-1}$ we must have a=2, so n=4.

If $n = 3^b$, then as $\phi(n) = 2 \cdot 3^{b-1}$ we must have b = 1, so n = 3.

Finally, if $n = 2^a 3^b$ with $a, b \neq 0$, then

$$\phi(n) = \phi(2^a)\phi(3^b) = 2^{a-1} \times 2 \cdot 3^{b-1}$$

so we must have a = b = 1, whence n = 6.

Conclusion: $\phi(n) = 2$ exactly when n = 3 or 4 or 6.

Exercise 5: A system of congruences (15 pts)

Find all $x \in \mathbb{Z}$ satisfying both

$$\begin{cases} 4x \equiv 5 \pmod{7} \\ 5x \equiv 3 \pmod{8} \end{cases}$$

Solution 5:

We are going to solve these equations independently, and then apply Chinese remainders.

Since 4 is coprime to 7, it is invertible mod 7; its inverse is 2. So the first equation is equivalent to $x \equiv 2 \times 5 \equiv 3 \pmod{7}$.

Since 5 is coprime to 8, it is invertible mod 8; its inverse is 5. So the second equation is equivalent to $x \equiv 5 \times 3 \equiv -1 \pmod{8}$.

Now, since 7 and 8 are coprime, we can apply Chinese remainders to find all $x \in \mathbb{Z}/56\mathbb{Z}$ such that $x \equiv 3 \pmod{7}$ and $x \equiv -1 \pmod{8}$. We know that the solution will exist and be unique in $x \in \mathbb{Z}/56\mathbb{Z}$.

In order to find this unique solution, we first look for u and v such that 7u+8v=1, we see that u=-1, v=1 works. So we get that

$$-7 \equiv 0 \pmod{7}, \quad -7 \equiv 1 \pmod{8}$$

and that

$$8 \equiv 1 \pmod{7}, \quad 8 \equiv 0 \pmod{8}.$$

We thus find the x such that

$$x \equiv 3 \pmod{7}, \quad x \equiv -1 \pmod{8}$$

as

$$x = 3 \times 8 + -1 \times -7 = 31.$$

(At this point, it is a good idea to check our computations by verifying that 31 is indeed a solution to both original equations.)

So the original equations are equivalent to $x \equiv 31 \pmod{56}$. In other words, the solutions are the

 $x = 31 + 56t, \ t \in \mathbb{Z}.$

Exercise 6: Irreducible polynomials over $\mathbb{Z}/2\mathbb{Z}$ (28 pts)

- 1. (6 pts) Find all irreducible polynomials of degree 2 over $\mathbb{Z}/2\mathbb{Z}$.
- 2. (12 pts) Use the previous question and a Euclidian division to deduce that the polynomial $x^4 + x + 1$ is irreducible over $\mathbb{Z}/2\mathbb{Z}$.
- 3. (10 pts) Find all irreducible polynomials of degree 3 over $\mathbb{Z}/2\mathbb{Z}$.

Solution 6:

1. A polynomial of degree 2 is irreducible if and only if it has no roots (this is a general fact and has nothing to with $\mathbb{Z}/2\mathbb{Z}$; this is just saying that a polynomial of degree 2 is either irreducible or factors as a product of two polynomials of degree 1).

So let $ax^2 + bx + c$ be a polynomial of degree 2, with $a, b, c \in \mathbb{Z}/2\mathbb{Z}$. We need $a \neq 0$ (else it's not of degree 2), and since $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$, we must have a = 1.

We need our polynomial not to vanish at x = 0, so $c \neq 0$ so c = 1, and neither at x = 1, so $1 + b + 1 = b \neq 0$, so b = 1.

We have thus proved that there is exactly one irreducible polynomial of degree 2:

$$x^2 + x + 1.$$

2. Let $f(x) = x^4 + x + 1$. We have $f(0) = f(1) = 1 \neq 0$, so this polynomial has no roots; since it has degree 4, it is thus either irreducible, or a product of two irreducible polynomials of degree 2 (any other factorization pattern would include at least one factor of degree 1, which would yield a root).

We saw in the previous question that there is only one irreducible polynomial of degree 2, namely $g(x) = x^2 + x + 1$. So let us see if f(x) is divisible by g(x), by performing the Euclidian division of f by g. We find quotient $= x^2 + x$ and remainder = 1. Since the remainder is not zero, g does not divide f. So f must be irreducible.

Remark: There was another way to show that. Indeed, if f had been a product of two irreducibles of degree 2, then since these irreducibles could only be g, and we would necessarily have had

$$f = g^2 = (x^2 + x + 1)^2 = x^4 + x^2 + 1.$$

This is not the case, so f is irreducible.

3. The degrees of the irreducible factors of a polynomial of degree 3 can be either 1+1+1, or 1+2, or 3 (again, this has nothing to do with $\mathbb{Z}/2\mathbb{Z}$ in particular). So it is irreducible if and only if it has no root (just like in degree 2; however this is no longer true in degree 4 and higher).

So let $ax^3 + bx^2 + cx + d$ be of degree 3. We must have $a \neq 0$, whence a = 1. Next, this polynomial will be irreducible if and only if it has no roots, that is to say if it does not vanish at x = 0 nor at x = 1. The first condition means that $d \neq 0$, so d = 1. The second condition means that $b + c \neq 0$, so b + c = 1, so either b = 0, c = 1, or b = 1, c = 0. We thus have two irreducibles of degree 3:

 $x^3 + x + 1$ and $x^3 + x^2 + 1$.

END