
Math 261 — Exam 1
October 4, 2017

The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is October 4th... (10 pts)
1. (4 pts) Compute the factorization of 104 into primes.

2. (6 pts) Deduce the number of divisors of 104, the sum of these divisors, and
the value of φ(104).

Solution 1:
1. Clearly, 104 is even, so we divide it by 2. We get 104 = 2×52, and 52 is again

even, so we keep going... we finally get 104 = 23 × 13. Now, 13 is prime (if
it were not, it would be divisible by a prime 6

√
13 < 4, so by 2 or 3, but it

isn’t), so this is the complete factorization of 104:

104 = 23 × 13.

2. The number of divisors is thus

σ0(104) = (1 + 3)(1 + 1) = 8 ,

the sum of these divisors is

σ1(104) = (1 + 2 + 4 + 8)(1 + 13) = 15× 14 = 210 ,

and finally

φ(104) = 104(1− 1/2)(1− 1/13) = 104
1

2

12

13
=

104

13
6 = 8× 6 = 48 .

Exercise 2: Consecutive composites (16 pts)
1. (4 pts) Find 5 consecutive composite (i.e. not prime) integers 6 100.

2. (12 pts) Find 2017 consecutive composite integers.

Hint: consider numbers of the form n! + m, where n,m ∈ N, m 6 n, and
n! = 1× 2× 3× · · · × n.



Solution 2:
1. The smallest solution is 24, 25, 26, 27, 28 . This is not the only one; for in-

stance, 32, 33, 34, 35, 36 also works.

2. (12 pts) If m 6 n, then m divides n! = 1 × 2 × 3 × · · · × m × · · · × n, so
m | (n! + m). Since n! + m > m, if m 6= 1 this implies that n! + m is
composite. So the integers

n! + 2, n! + 3, · · · , n! + n

are all composite, and of course they are consecutive. Since this sequence
contains n − 1 integers, and we want a sequence of length 2017, we take
n = 2018, and get

2018! + 2, 2018! + 3, · · · , 2018! + 2018.

Remark: These integers have 5795 digits each!

Exercise 3: Making change (11 pts)
1. (8 pts) Find all integers x, y ∈ Z such that 20x+ 50y = 10000.

2. (3 pts) Deduce how many different ways there are to pay $10000 using only
banknotes of $20 and $50.

Solution 3:
1. Since gcd(20, 50) = 10 divides 10000, there are solutions, and the equation can

be simplified into
2x+ 5y = 1000.

One solution is x = 500, y = 0, so the solutions are given by

x = 500− 5t, y = 2t, t ∈ Z.

2. This corresponds to finding the solutions of the above equation with x > 0
and y > 0. In other words, we need 500 − 5t > 0, so t 6 100, and 2t > 0, so
t > 0. So the solutions with x > 0 and y > 0 are given by the t ∈ Z such that
0 6 t 6 100. There are thus 101 ways.
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Exercise 4: Only 2 (20 pts)
Find all n ∈ N such that φ(n) = 2.

Solution 4:
Clearly n = 1 does not work, so we can consider a prime divisor p of n. We can
write n = pvm, where v = vp(n) ∈ N and m is coprime to pv; then, since φ is
multiplicative, we have

2 = φ(n) = φ(pv)φ(m) > φ(pv) = (p− 1)pv−1 > p− 1,

so necessarily p 6 3. Thus the only possible prime divisors of n are 2 and 3.
If n = 2a, then as φ(n) = 2a−1 we must have a = 2, so n = 4.
If n = 3b, then as φ(n) = 2 · 3b−1 we must have b = 1, so n = 3.
Finally, if n = 2a3b with a, b 6= 0, then

φ(n) = φ(2a)φ(3b) = 2a−1 × 2 · 3b−1

so we must have a = b = 1, whence n = 6.
Conclusion: φ(n) = 2 exactly when n = 3 or 4 or 6.

Exercise 5: A system of congruences (15 pts)
Find all x ∈ Z satisfying both {

4x ≡ 5 (mod 7)
5x ≡ 3 (mod 8)

Solution 5:
We are going to solve these equations independently, and then apply Chinese re-
mainders.

Since 4 is coprime to 7, it is invertible mod 7; its inverse is 2. So the first equation
is equivalent to x ≡ 2× 5 ≡ 3 (mod 7).

Since 5 is coprime to 8, it is invertible mod 8; its inverse is 5. So the second
equation is equivalent to x ≡ 5× 3 ≡ −1 (mod 8).

Now, since 7 and 8 are coprime, we can apply Chinese remainders to find all
x ∈ Z/56Z such that x ≡ 3 (mod 7) and x ≡ −1 (mod 8). We know that the
solution will exist and be unique in x ∈ Z/56Z.

In order to find this unique solution, we first look for u and v such that 7u+8v =
1, we see that u = −1, v = 1 works. So we get that

−7 ≡ 0 (mod 7), −7 ≡ 1 (mod 8)

and that
8 ≡ 1 (mod 7), 8 ≡ 0 (mod 8).

We thus find the x such that

x ≡ 3 (mod 7), x ≡ −1 (mod 8)

as
x = 3× 8 +−1×−7 = 31.
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(At this point, it is a good idea to check our computations by verifying that 31 is
indeed a solution to both original equations.)

So the original equations are equivalent to x ≡ 31 (mod 56). In other words,
the solutions are the

x = 31 + 56t, t ∈ Z.

Exercise 6: Irreducible polynomials over Z/2Z (28 pts)
1. (6 pts) Find all irreducible polynomials of degree 2 over Z/2Z.

2. (12 pts) Use the previous question and a Euclidian division to deduce that the
polynomial x4 + x+ 1 is irreducible over Z/2Z.

3. (10 pts) Find all irreducible polynomials of degree 3 over Z/2Z.

Solution 6:
1. A polynomial of degree 2 is irreducible if and only if it has no roots (this is a

general fact and has nothing to with Z/2Z; this is just saying that a polynomial
of degree 2 is either irreducible or factors as a product of two polynomials of
degree 1).

So let ax2 + bx+ c be a polynomial of degree 2, with a, b, c ∈ Z/2Z. We need
a 6= 0 (else it’s not of degree 2), and since Z/2Z = {0, 1}, we must have a = 1.

We need our polynomial not to vanish at x = 0, so c 6= 0 so c = 1, and neither
at x = 1, so 1 + b+ 1 = b 6= 0, so b = 1.

We have thus proved that there is exactly one irreducible polynomial of degree
2:

x2 + x+ 1.

2. Let f(x) = x4 + x + 1. We have f(0) = f(1) = 1 6= 0, so this polynomial has
no roots; since it has degree 4, it is thus either irreducible, or a product of
two irreducible polynomials of degree 2 (any other factorization pattern would
include at least one factor of degree 1, which would yield a root).

We saw in the previous question that there is only one irreducible polynomial
of degree 2, namely g(x) = x2 +x+ 1. So let us see if f(x) is divisible by g(x),
by performing the Euclidian division of f by g. We find quotient = x2 + x
and remainder = 1. Since the remainder is not zero, g does not divide f . So
f must be irreducible.

Remark: There was another way to show that. Indeed, if f had been a product
of two irreducibles of degree 2, then since these irreducibles could only be g,
and we would necessarily have had

f = g2 = (x2 + x+ 1)2 = x4 + x2 + 1.

This is not the case, so f is irreducible.

3. The degrees of the irreducible factors of a polynomial of degree 3 can be either
1+1+1, or 1+2, or 3 (again, this has nothing to do with Z/2Z in particular).
So it is irreducible if and only if it has no root (just like in degree 2; however
this is no longer true in degree 4 and higher).
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So let ax3 + bx2 + cx+ d be of degree 3. We must have a 6= 0, whence a = 1.
Next, this polynomial will be irreducible if and only if it has no roots, that is
to say if it does not vanish at x = 0 nor at x = 1. The first condition means
that d 6= 0, so d = 1. The second condition means that b+ c 6= 0, so b+ c = 1,
so either b = 0, c = 1, or b = 1, c = 0. We thus have two irreducibles of
degree 3:

x3 + x+ 1 and x3 + x2 + 1.

END
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