Computing modular Galois representations and lightly ramified PGL_{2}-fields

Nicolas Mascot

University of Warwick

Arithmetic Geometry and Computer Algebra workshop
Oldenburg
July $1^{\text {st }} 2017$

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}(N, \varepsilon)$ be a newform of weight $k \geqslant 2$.

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}(N, \varepsilon)$ be a newform of weight $k \geqslant 2$.

Pick a prime \mathfrak{l} of K_{f} lying over $\ell \in \mathbb{N}$, and let $\mathbb{F}_{\mathfrak{l}}$ be its residual field.

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}(N, \varepsilon)$ be a newform of weight $k \geqslant 2$.

Pick a prime \mathfrak{l} of K_{f} lying over $\ell \in \mathbb{N}$, and let $\mathbb{F}_{\mathfrak{l}}$ be its residual field.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right)
$$

which is unramified outside ℓN, and such that for all $p \nmid \ell N$, $\rho_{f, l}\left(\mathrm{Frob}_{p}\right)$ has characteristic polynomial

$$
X^{2}-a_{p} X+\varepsilon(p) p^{k-1} \in \mathbb{F}_{r}[X]
$$

Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in \mathcal{N}_{k}(N, \varepsilon)$ be a newform of weight $k \geqslant 2$.

Theorem (Deligne, Serre, Shimura, 1971)

There exists a unique continuous Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)
$$

which is unramified outside ℓN, and such that for all $p \nmid \ell N$, $\rho_{f, l}\left(\mathrm{Frob}_{p}\right)$ has characteristic polynomial

$$
X^{2}-a_{p} X+\varepsilon(p) p^{k-1} \in \mathbb{F}_{\mathrm{l}}[X]
$$

Goal: compute $\rho_{f, l}$ -

Motivation

- The Galois representation itself,

Motivation

- The Galois representation itself,
- The field $L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, r}}$ is a Galois number field, with Galois group (almost) $G L_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)$, whose ramification behaviour is well-understood \rightsquigarrow Inverse Galois problem for GL_{2} and PGL_{2}, Gross's problem, construction of very lightly ramified fields,

Motivation

- The Galois representation itself,
- The field $L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, r}}$ is a Galois number field, with Galois group (almost) $\mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)$, whose ramification behaviour is well-understood \rightsquigarrow Inverse Galois problem for GL_{2} and PGL_{2}, Gross's problem, construction of very lightly ramified fields,
- Fast computation of Fourier coefficients: computation of $a_{p} \bmod \mathfrak{l}=\operatorname{Tr} \rho_{f, \mathfrak{l}}\left(\right.$ Frob $\left._{p}\right)$ in time $(\log p)^{2+\varepsilon(p)}$.

Example: $f=\Delta \bmod \mathfrak{l}=31$

Theorem (M.)

- The field cut out by $\rho_{\Delta, 31}$ is the field generated by the $31^{\text {st }}$ roots of unity and by the roots of

$$
\begin{aligned}
& x^{64}-21 x^{63}+118 x^{62}+527 x^{61}-8587 x^{60}+18383 x^{59}+263035 x^{58}-2095879 x^{57}+2416016 x^{56}+44283128 x^{55}-240474192 x^{54} \\
& +84687350 x^{53}+3638349286 x^{52}-12617823980 x^{51}-10297265505 x^{50}+155175311479 x^{49}-196432825560 x^{48}-771645455342 x^{47} \\
& +1482783472303 x^{46}+2641351695834 x^{45}+4650870173875 x^{44}-45480241563019 x^{43}-54597672402738 x^{42}+501026042999912 x^{41} \\
& -496541492329624 x^{40}-712343608491160 x^{39}+5302741451178477 x^{38}-30548025690548139 x^{37}+34878663423629056 x^{36} \\
& +288784532405339724 x^{35}-874206875792459963 x^{34}-825384106177640249 x^{33}+6958723996166230970 x^{32} \\
& -4535708640900181166 x^{31}-30017821501048367756 x^{30}+56583574288118086410 x^{29}+60507682456797414358 x^{28} \\
& -278043951776326798765 x^{27}+87013091280485835964 x^{26}+765685764124853689529 x^{25}-1039521490897195574873 x^{24} \\
& -857609563094973739451 x^{23}+3508677503532089909529 x^{22}-2261986657658172377618 x^{21}-5701736296366236274465 x^{20} \\
& +13022859322612898456054 x^{19}-641003473636730532862 x^{18}-29939230256003209147601 x^{17}+25447129369769267020402 x^{16} \\
& +36125137963345226955671 x^{15}-55314588133331740131989 x^{14}-18703775559594899286772 x^{13}+43941206930666596631797 x^{12} \\
& +17651378415866112635127 x^{11}+10928239966752626190216 x^{10}-81873964056071560411072 x^{9}-14246438965830190561265 x^{8} \\
& +128298548281018972743749 x^{7}-50060167623901195766317 x^{6}-45764538130200829948820 x^{5}+18800719945150143916844 x^{4} \\
& -8179472634137717244072 x^{3}+62290435026572905701979 x^{2}-71710139962834196823306 x+25842211492123062583556 .
\end{aligned}
$$

(several CPU years).

Example: $f=\Delta \bmod \mathfrak{l}=31$

Theorem (M.)

- The field cut out by $\rho_{\Delta, 31}$ is the field generated by the $31^{\text {st }}$ roots of unity and by the roots of $x^{64}-21 x^{63}+\cdots$.
- We have the following values:

p	$\rho_{\Delta, 31}\left(\right.$ Frob $\left._{p}\right)$ similar to	$\tau(p) \bmod 31$
$10^{1000}+453$	$\left[\begin{array}{cc}30 & 0 \\ 0 & 20\end{array}\right]$	19
$10^{1000}+1357$	$\left[\begin{array}{cc}0 & 2 \\ 1 & 13\end{array}\right]$	13
$10^{1000}+4351$	$\left[\begin{array}{cc}4 & 1 \\ 0 & 4\end{array}\right]$	8

(30s of CPU time per p).

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let $X_{1}(N)$ be the modular curve $\Gamma_{1}(N) \backslash \mathcal{H}^{\bullet}$.

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let $X_{1}(N)$ be the modular curve $\Gamma_{1}(N) \backslash \mathcal{H}$.

Credit: Helena Verrill

The modular curve $X_{1}(N)$

For $N \in \mathbb{N}$, let $X_{1}(N)$ be the modular curve $\Gamma_{1}(N) \backslash \mathcal{H}^{\bullet}$.

The ℓ-torsion of its Jacobian $J_{1}(N)$ contains the $\bmod \ell$ representations attached to the newforms of weight $k=2$ and level $\Gamma_{1}(N)$.

Weight lowering

Weight-lowering theorem

Suppose $\ell \geqslant 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$ be a newform of weight $3 \leqslant k \leqslant \ell$. There exists a newform $f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell N)\right)$ of weight 2 and a prime $\mathfrak{l}_{2} \mid \ell$ of $K_{f_{2}}$ such that $f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}$.

Weight lowering

Weight-lowering theorem

Suppose $\ell \geqslant 5$ and $\ell \nmid N$, and let $f \in \mathcal{N}_{k}\left(\Gamma_{1}(N)\right)$ be a newform of weight $3 \leqslant k \leqslant \ell$. There exists a newform $f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell N)\right)$ of weight 2 and a prime $\mathfrak{l}_{2} \mid \ell$ of $K_{f_{2}}$ such that $f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}$.

Thus $\rho_{f, l} \simeq \rho_{f_{2}, l_{2}}$ shows up as

$$
V_{f, \mathfrak{l}}=\bigcap_{p} \operatorname{Ker}\left(\left.T_{p}\right|_{J_{1}(\ell N)[\ell]}-a_{p}(f) \bmod \mathfrak{l}\right) \subset J_{1}(\ell N)[\ell]
$$

Weight lowering

Thus $\rho_{f, \mathrm{l}} \simeq \rho_{f_{2}, l_{2}}$ shows up as

$$
V_{f, \mathfrak{l}}=\bigcap_{p} \operatorname{Ker}\left(T_{p} \mid J_{1}(\ell N)[\ell]-a_{p}(f) \bmod \mathfrak{l}\right) \subset J_{1}(\ell N)[\ell]
$$

Example

Take $f=\Delta \in \mathcal{N}_{12}\left(\Gamma_{1}(1)\right)$. If $\ell \geqslant 13$, there exists

$$
f_{2} \in \mathcal{N}_{2}\left(\Gamma_{1}(\ell)\right), \quad \mathfrak{l}_{2} \subset K_{f_{2}}
$$

such that

$$
f_{2} \bmod \mathfrak{l}_{2}=\Delta \bmod \ell \operatorname{in} \mathbb{F}_{\ell}[[q]]
$$

so that $\rho_{\Delta, \ell}$ is afforded in $J_{1}(\ell)[\ell]$.

The modular curve $X_{H}(\ell N)$

The genus of $X_{1}(\ell N)$ get quickly large with ℓN.

The modular curve $X_{H}(\ell N)$

The genus of $X_{1}(\ell N)$ get quickly large with ℓN.
However, the condition

$$
f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}
$$

implies that

$$
\forall x, \varepsilon_{f_{2}}(x) \bmod \mathfrak{l}_{2}=x^{k-2} \varepsilon_{f}(x) \bmod \mathfrak{l} .
$$

$\rightsquigarrow \rho_{f, \mathrm{l}}$ actually occurs in the Jacobian of the modular curve $X_{H}(\ell N)$ of level

$$
\Gamma_{H}(\ell N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(\ell N) \right\rvert\, d \in H\right\}
$$

where $H=\operatorname{Ker}\left(\varepsilon_{f_{2}} \bmod \mathfrak{l}_{2}\right) \leqslant(\mathbb{Z} / \ell N \mathbb{Z})^{*}$.

The modular curve $X_{H}(\ell N)$

The genus of $X_{1}(\ell N)$ get quickly large with ℓN.
However, the condition

$$
f \bmod \mathfrak{l}=f_{2} \bmod \mathfrak{l}_{2}
$$

implies that

$$
\forall x, \varepsilon_{f_{2}}(x) \bmod \mathfrak{l}_{2}=x^{k-2} \varepsilon_{f}(x) \bmod \mathfrak{l}
$$

$\rightsquigarrow \rho_{f, \mathrm{l}}$ actually occurs in the Jacobian of the modular curve $X_{H}(\ell N)$ of level

$$
\Gamma_{H}(\ell N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(\ell N) \right\rvert\, d \in H\right\}
$$

where $H=\operatorname{Ker}\left(\varepsilon_{f_{2}} \bmod \mathfrak{l}_{2}\right) \leqslant(\mathbb{Z} / \ell N \mathbb{Z})^{*}$.
When H is large, the genus of this curve is much smaller than that of $X_{1}(\ell N)$.

Khuri-Makdisi's algorithms

Let C be a "nice" curve of genus g.
Fix a divisor D_{0} on C of degree $d_{0} \geqslant 2 g+1$, and compute a basis of

$$
V=H^{0}\left(C, 3 D_{0}\right)
$$

the elements being represented by multipoint evaluation, or Taylor series (or both !)

Khuri-Makdisi's algorithms

Let C be a "nice" curve of genus g.
Fix a divisor D_{0} on C of degree $d_{0} \geqslant 2 g+1$, and compute a basis of

$$
V=H^{0}\left(C, 3 D_{0}\right),
$$

the elements being represented by multipoint evaluation, or Taylor series (or both !)

A point $x \in \operatorname{Jac}(C)=\operatorname{Pic}^{0}(C) \leftrightarrow$ the subspace

$$
W_{D_{x}}=V\left(-D_{x}\right)=H^{0}\left(C, 3 D_{0}-D_{x}\right) \subset V,
$$

where $D_{x} \geqslant 0$ is a divisor of degree d_{0} such that

$$
\left[D_{x}-D_{0}\right]=x .
$$

Khuri-Makdisi's algorithms

Let C be a "nice" curve of genus g.
Fix a divisor D_{0} on C of degree $d_{0} \geqslant 2 g+1$, and compute a basis of

$$
V=H^{0}\left(C, 3 D_{0}\right),
$$

the elements being represented by multipoint evaluation, or Taylor series (or both !)

A point $x \in \operatorname{Jac}(C)=\operatorname{Pic}^{0}(C) \leftrightarrow$ the subspace

$$
W_{D_{x}}=V\left(-D_{x}\right)=H^{0}\left(C, 3 D_{0}-D_{x}\right) \subset V,
$$

where $D_{x} \geqslant 0$ is a divisor of degree d_{0} such that

$$
\left[D_{x}-D_{0}\right]=x
$$

Arithmetic in $\mathrm{Pic}^{0}(C)$ is then performed by linear algebra on the subspaces of V.

Khuri-Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{H}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

Khuri-Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{H}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

We represent these forms by their q-expansion at all the cusps.

Khuri-Makdisi's algorithms on the modular curve

Let $f_{0} \in \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right)$ be defined over \mathbb{Q}.
We take $D_{0}=\left(f_{0}\right)+c_{1}+c_{2}+c_{3}$, where the c_{i} are cusps such that $\sum c_{i}$ is defined over \mathbb{Q}.

$$
\rightsquigarrow H^{0}\left(D_{0}\right) \simeq \mathcal{S}_{2}\left(\Gamma_{H}(\ell N)\right) \oplus\left\langle E_{1,2}, E_{1,3}\right\rangle \subset \mathcal{M}_{2}\left(\Gamma_{H}(\ell N)\right),
$$

where $E_{1, i}$ is an Eisenstein series of weight 2 that vanishes at all the cusps except c_{1} and c_{i}.

We represent these forms by their q-expansion at all the cusps.
We then compute $V=H^{0}\left(3 D_{0}\right) \subset \mathcal{M}_{6}\left(\Gamma_{H}(\ell N)\right)$ by multiplication.

An analytic point of view

In the elliptic curve case:

An analytic point of view

In the elliptic curve case:

In the modular case, we work with divisors instead of points.

There is no \wp, so we must invert \jmath "by hand".

Strategy

Goal: compute $V_{f, I} \subset J_{H}(\ell N)[\ell]$.
(1) Period lattice Λ of $X_{H}(\ell N)$

High accuracy q-expansions and term-by-term integration of weight 2 cuspforms \rightsquigarrow analytic model of $J_{H}(\ell N)$
(2) Approximation over \mathbb{C} of the ℓ-torsion

Locally invert Abel-Jacobi near 0 by Newton. Use periods to compute $2^{m} \ell$-torsion divisor classes, $m \gg 1$. Use Khuri-Makdisi's algorithms to double these classes m times.
(3) Evaluation of the ℓ-torsion

Construct of a function $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$, evaluate it at the points of $V_{f, l} \subset J_{H}(\ell N)[\ell]$.
\rightsquigarrow number field cut out by $\rho_{f, 1}$
(4) Compute $\rho_{f, l}\left(\right.$ Frob $\left._{p}\right)$
thanks to the Dokchitsers' algorithm.

Evaluating the ℓ-torsion

Proposition

Let $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$, and let

$$
F(x)=\prod_{\substack{D \in V_{f, l} \\ D \neq 0}}(x-\alpha(D))
$$

Then $F(x) \in \mathbb{Q}[x]$.
If α is injective on $V_{f, l}$, then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ permutes the roots of $F(x)$ as it permutes the points of $V_{f, \mathrm{r}}$. In particular, $F(x)$ is then irreducible, and its decomposition field is

$$
L=\overline{\mathbb{Q}}^{\operatorname{Ker} \rho_{f, 1}}
$$

Classical choice of $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$

Let E_{0} be an effective divisor defined over \mathbb{Q} and of degree g. Pick $\xi \in \mathbb{Q}\left(X_{H}(\ell N)\right)$, and extend it to $J_{H}(\ell N)$ by

$$
\alpha: \begin{array}{ccc}
J_{H}(\ell N) & \cdots & \mathbb{C} \\
{\left[\sum_{i=1}^{g} P_{i}-E_{0}\right]} & \longmapsto & \sum_{i=1}^{g} \xi\left(P_{i}\right) .
\end{array}
$$

Classical choice of $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$

Let E_{0} be an effective divisor defined over \mathbb{Q} and of degree g. Pick $\xi \in \mathbb{Q}\left(X_{H}(\ell N)\right)$, and extend it to $J_{H}(\ell N)$ by

$$
\alpha: \begin{array}{ccc}
J_{H}(\ell N) & \cdots & \mathbb{C} \\
{\left[\sum_{i=1}^{g} P_{i}-E_{0}\right]} & \longmapsto & \sum_{i=1}^{g} \xi\left(P_{i}\right)
\end{array}
$$

The divisor of poles of α is

$$
(\alpha)_{\infty}=\sum_{Q \text { pole of } \xi} \tau_{[Q-o]}^{*} \Theta,
$$

so ξ must be chosen with degree as small as possible.

Classical choice of $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$

Let E_{0} be an effective divisor defined over \mathbb{Q} and of degree g. Pick $\xi \in \mathbb{Q}\left(X_{H}(\ell N)\right)$, and extend it to $J_{H}(\ell N)$ by

$$
\alpha: \begin{gathered}
J_{H}(\ell N) \\
{\left[\sum_{i=1}^{g} P_{i}-E_{0}\right]}
\end{gathered} \stackrel{\rightharpoonup}{\bullet} \begin{array}{cc}
g_{i=1}^{g} \\
& \longmapsto\left(P_{i}\right) .
\end{array}
$$

The divisor of poles of α is

$$
(\alpha)_{\infty}=\sum_{Q \text { pole of } \xi} \tau_{[Q-O]}^{*} \Theta
$$

so ξ must be chosen with degree as small as possible.
Unfortunately,

Theorem (Abramovich, 1996)

$$
\operatorname{deg} \xi \gtrsim g
$$

Better choice of $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$

Let E_{0} be an effective divisor defined over \mathbb{Q} and of degree g. Points on $J_{H}(\ell N)$ can be written [$E-E_{0}$], E effective of degree g. Fix an effective divisor B of degree $2 g$. Then

$$
H^{0}(B-E)=\mathbb{C} \phi_{E} .
$$

We can thus define

$$
\begin{array}{cccc}
\alpha: \quad J_{H}(\ell N) & \cdots & \mathbb{C} \\
{\left[E-E_{0}\right]} & \longmapsto & \phi_{E}(P) \\
\phi_{E}(Q)
\end{array}
$$

where $P, Q \in X_{H}(\ell N)(\mathbb{Q})$ are fixed.

Better choice of $\alpha \in \mathbb{Q}\left(J_{H}(\ell N)\right)$

$$
H^{0}(B-E)=\mathbb{C} \phi_{E} .
$$

We can thus define

$$
\begin{array}{lllc}
\alpha: \quad J_{H}(\ell N) & \cdots & \mathbb{C} \\
{\left[E-E_{0}\right]} & \longmapsto & \frac{\phi_{E}(P)}{\phi_{E}(Q)}
\end{array}
$$

where $P, Q \in X_{H}(\ell N)(\mathbb{Q})$ are fixed.

Theorem (M.)

The divisor of poles of α is the sum of only 2 translates of Θ.

Companion forms and tame ramification

$\rho_{f, l}$ is

- unramified outside ℓN,
- (at most) tamely ramified at every $p \neq \ell$ s.t. $p \| N$,
- and usually wildly ramified at ℓ,

Companion forms and tame ramification

$\rho_{f, r}$ is

- unramified outside ℓN,
- (at most) tamely ramified at every $p \neq \ell$ s.t. $p \| N$,
- and usually wildly ramified at ℓ, except
- if f is supersingular $\bmod \mathfrak{l}$, i.e. $a_{\ell}(f) \equiv 0 \bmod \mathfrak{l}$,
- or if f admits a companion form mod \mathfrak{l}, i.e.

$$
\exists g \in \mathcal{S}_{\ell+1-k}\left(\Gamma_{1}(N)\right) \text { s.t. } \quad \sum_{n} n a_{n}(f) q^{n} \equiv \sum_{n} n^{k} a_{n}(g) q^{n} .
$$

Companion forms and tame ramification

$\rho_{f, r}$ is

- unramified outside ℓN,
- (at most) tamely ramified at every $p \neq \ell$ s.t. $p \| N$,
- and usually wildly ramified at ℓ, except
- if f is supersingular $\bmod \mathfrak{l}$, i.e. $a_{\ell}(f) \equiv 0 \bmod \mathfrak{l}$,
- or if f admits a companion form mod \mathfrak{l}, i.e.

$$
\exists g \in \mathcal{S}_{\ell+1-k}\left(\Gamma_{1}(N)\right) \text { s.t. } \quad \sum_{n} n a_{n}(f) q^{n} \equiv \sum_{n} n^{k} a_{n}(g) q^{n} .
$$

We can use these exceptional cases to discover number fields with Galois group $\leqslant \mathrm{GL}_{2}\left(\mathbb{F}_{\mathfrak{l}}\right)$ and very small discriminant.

Companion forms and tame ramification

$\rho_{f, r}$ is

- unramified outside ℓN,
- (at most) tamely ramified at every $p \neq \ell$ s.t. $p \| N$,
- and usually wildly ramified at ℓ, except
- if f is supersingular $\bmod \mathfrak{l}$, i.e. $a_{\ell}(f) \equiv 0 \bmod \mathfrak{l}$,
- or if f admits a companion form mod \mathfrak{l}, i.e.

$$
\exists g \in \mathcal{S}_{\ell+1-k}\left(\Gamma_{1}(N)\right) \text { s.t. } \quad \sum_{n} n a_{n}(f) q^{n} \equiv \sum_{n} n^{k} a_{n}(g) q^{n}
$$

We can use these exceptional cases to discover number fields with Galois group $\leqslant \mathrm{PGL}_{2}\left(\mathbb{F}_{\mathrm{t}}\right)$ and very small discriminant, by considering the projective representation

$$
\pi_{f, \mathrm{l}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \xrightarrow{\rho_{f, \mathrm{l}}} \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right) .
$$

Prediction of the discriminants

Let $f \in \mathcal{N}_{k}(N, \varepsilon)$ with N squarefree and coprime to ℓ and $\mathfrak{l} \mid \ell$ of degree m. Let

$$
\pi_{f, \mathrm{l}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right)
$$

be the projective representation attached to $f \bmod \mathfrak{l}$, and consider the Galois number field L that it cuts out, and let $K \subset L$ correspond to the stabiliser of a point of $\mathbb{P}^{1}\left(\mathbb{F}_{\mathfrak{r}}\right)$. Let d_{K}, d_{L} be their respective root discriminants.

Prediction of the discriminants

Theorem (M.)

Assume that $\pi_{f, \mathfrak{l}}$ acts transitively on $\mathbb{P}^{1}\left(\mathbb{F}_{\mathfrak{l}}\right)$. Let $M=\operatorname{cond}(\varepsilon \bmod \mathfrak{l})$ and $N^{\prime}=\prod\left\{p \neq \ell \mid \rho_{f, \mathfrak{l}}\right.$ ramif. at $\left.p\right\}$, so $M\left|N^{\prime}\right| N$, and define $r_{p}=\operatorname{ord}\left(\varepsilon_{p} \bmod \mathfrak{l}\right)$ for $p \mid M$. Then
$d_{K}=\ell^{\alpha}\left(\frac{N^{\prime}}{M}\right)^{\frac{1-1 / \ell}{1+1 / \ell(\ell)}}\left(\prod_{p \mid M} p^{1-1 / r_{p}}\right)^{\frac{\ell^{m}-1}{\ell+1}}, \quad d_{L}=\ell^{\beta}\left(\frac{N^{\prime}}{M}\right)^{1-1 / \ell} \prod_{p \mid M} p^{1-1 / r_{p}}$
where

$$
\beta=1-\frac{\operatorname{gcd}(k-1, \ell-1)}{\ell-1}, \quad \alpha=\frac{\ell^{m}-1}{\ell^{m}+1} \beta
$$

if f admits a companion form mod \mathfrak{l}, and

$$
\beta=1-\frac{\operatorname{gcd}(k-1, \ell+1)}{\ell+1}, \quad \alpha= \begin{cases}\beta & \text { if } m \text { is odd, } \\ \frac{\ell^{m}-1}{\ell^{m}+1} \beta & \text { if } m \text { is even }\end{cases}
$$

if f is supersingular mod \mathfrak{l}.

Example 1

$f=q+2 q^{2}-4 q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{6}\left(\Gamma_{0}(5)\right)$ is supersingular mod $\mathfrak{l}=13$.
$\operatorname{Im} \pi_{f, \mathrm{l}}=\mathrm{PGL}_{2}\left(\mathbb{F}_{13}\right)$, and $X_{H}(5 \cdot 13)$ has genus $g=13$.

Theorem (M.)

K is the root field and L is the splitting field of

$$
x^{14}-x^{13}-26 x^{11}+39 x^{10}+104 x^{9}-299 x^{8}-195 x^{7}+676 x^{6}+481 x^{5}-156 x^{4}-39 x^{3}+65 x^{2}-14 x+1
$$

We have $d_{K}=43.002 \cdots, d_{L}=47.816 \cdots$
(cf. $8 \pi e^{\gamma}=44.763 \cdots$).

Conjecture (Roberts, M.)

L has the smallest discriminant among all the Galois number fields with Galois group $\mathrm{PGL}_{2}\left(\mathbb{F}_{13}\right)$.

Example 2

$f=q-6 q^{2}-42 q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{8}\left(\Gamma_{0}(7)\right)$ admits a companion $\bmod \mathfrak{l}=13$.
$\operatorname{Im} \pi_{f, \mathrm{l}}=\mathrm{PGL}\left(\mathbb{F}_{13}\right)$, and $X_{H}(7 \cdot 13)$ has genus $g=13$ (again).

Theorem (M.)

K is the root field and L is the splitting field of $x^{14}-52 x^{7}+91 x^{6}+273 x^{5}-364 x^{4}-1456 x^{3}-455 x^{2}+1568 x+1495$.
We have $d_{K}=39.775 \cdots, d_{L}=63.271 \cdots$.

Example 3

$f=q+1728 q^{2}-59049 q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{22}\left(\Gamma_{0}(3)\right)$ admits a companion $\bmod \mathfrak{l}=41$.
$\operatorname{Im} \pi_{f, l}=\mathrm{PGL}_{2}\left(\mathbb{F}_{41}\right)$, and this time $X_{H}(3 \cdot 41)$ has genus $g=25$.

Theorem (M.)

K is the root field and L is the splitting field of

```
x 42 - 13x 41 + 70 x 40 - 209x 39 + 395x 38 - 1235x 37 + 8745x 36 - 32673x 35 +41466x\mp@subsup{x}{}{34}+23047\mp@subsup{x}{}{33}+117494\mp@subsup{x}{}{32}-1473749\mp@subsup{x}{}{31}
+3432505x\mp@subsup{x}{}{30}+2534861\mp@subsup{x}{}{29}-8121350\mp@subsup{x}{}{28}-46053615\mp@subsup{x}{}{27}+55119882\mp@subsup{x}{}{26}+3771513\mp@subsup{x}{}{25}+926108685\mp@subsup{x}{}{24}+222895020\mp@subsup{x}{}{23}-7775139729\mp@subsup{x}{}{22}
-13813042275x 21 +57369301467\mp@subsup{x}{}{20}+104177173023x\mp@subsup{}{}{19}-235503859068\mp@subsup{x}{}{18}-631349403945\mp@subsup{x}{}{17}+789220697001\mp@subsup{x}{}{16}+2415426085387\mp@subsup{x}{}{15}
-1368495524968x\mp@subsup{x}{}{14}-7976148397256\mp@subsup{x}{}{13}+2486419230610x\mp@subsup{x}{}{12}+18312969605213\mp@subsup{x}{}{11}-3490664476058\mp@subsup{x}{}{10}-33337073689065\mp@subsup{x}{}{9}
+9634206834816x 8}+38121337992357\mp@subsup{x}{}{7}-8827768624685\mp@subsup{x}{}{6}-35949940921273\mp@subsup{x}{}{5}+19912312531\mp@subsup{x}{}{4}+24698337243313\mp@subsup{x}{}{3
+7457815492250x2 - 8123634511724x-4296658258197.
```

We have $d_{K}=89.533 \cdots, d_{L}=109.131 \cdots$.

Example 4

$f=q+18 \sqrt{-26} q^{2}-(54 \sqrt{-26}+675) q^{3}+O\left(q^{4}\right) \in \mathcal{N}_{13}\left(3,\left(\frac{-3}{\bullet}\right)\right)$ is supersingular mod both primes above 37 .

We have $\operatorname{Im} \pi_{f, l}=\mathrm{PSL}_{2}\left(\mathbb{F}_{37}\right), d_{K}=51.483 \cdots$, and $d_{L}=52.993 \cdots$.

Unfortunately, the genus of $X_{H}(3 \cdot 37)$ is $g=385$.

Thank you!

