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1 Introduction to Banach algebras

1.1 Definitions and examples

Let us adopt the convention that all vector spaces and Banach spaces are
over the field of complex numbers.

1.1.1 Definition. A Banach algebra is a vector space A such that

(i). A is an algebra: it is equipped with an associative product (a, b) 7→ ab
which is linear in each variable,

(ii). A is a Banach space: it has a norm ‖ · ‖ with respect to which it is
complete, and

(iii). A is a normed algebra: we have ‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A.

If the product is commutative, so that ab = ba for all a, b ∈ A, then we say
that A is an abelian Banach algebra.

1.1.2 Remark. The inequality ‖ab‖ ≤ ‖a‖ ‖b‖ ensures that the product is
continuous as a map A× A→ A.

1.1.3 Examples. (i). Let X be a topological space. We write BC (X) for
the set of bounded continuous functions X → C. Recall from [FA 1.7.2]
that BC (X) is a Banach space under the pointwise vector space oper-
ations and the uniform norm, which is given by

‖f‖ = sup
x∈X

|f(x)|, f ∈ BC (X).

The pointwise product

(fg)(x) = f(x)g(x), f, g ∈ BC (X), x ∈ X

turns BC (X) into an abelian Banach algebra. Indeed, the product is
clearly commutative and associative, it is linear in f and g, and

‖fg‖ = sup
x∈X

|f(x)| |g(x)| ≤ sup
x1∈X

|f(x1)| · sup
x2∈X

|g(x2)| = ‖f‖ ‖g‖.

If X is a compact space, then every continuous function X → C is
bounded. For this reason, we will write C(X) instead of BC (X) if X
is compact.
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(ii). If A is a Banach algebra, a subalgebra of A is a linear subspace B ⊆ A
such that a, b ∈ B =⇒ ab ∈ B. If B is a closed subalgebra of a
Banach algebra A, then B is complete, so it is a Banach algebra (under
the same operations and norm as A). We then say that B is a Banach
subalgebra of A.

(iii). Let D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}. The disc algebra
is the following Banach subalgebra of C(D):

A(D) = {f ∈ C(D) : f is analytic on D}.

(iv). The set C0(R) of continuous functions f : R → C such that

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

This is a Banach subalgebra of BC (R).

(v). Let ℓ1(Z) denote the vector space of complex sequences (an)n∈Z in-
dexed by Z such that ‖a‖ =

∑
n∈Z

|an| < ∞. This is a Banach space
by [FA 1.7.10]. We define a product ∗ such that if a = (an)n∈Z and
b = (bn)n∈Z are in ℓ1(Z) then the nth entry of a ∗ b is

(a ∗ b)n =
∑

m∈Z

ambn−m.

This series is absolutely convergent, and a ∗ b ∈ ℓ1(Z), since

‖a ∗ b‖ =
∑

n

|(a ∗ b)n| =
∑

n

∣∣∣
∑

m

ambn−m

∣∣∣

≤
∑

m,n

|am| |bn−m| =
∑

m

|am|
∑

n

|bm−n| = ‖a‖ ‖b‖ <∞.

It is an exercise to show that ∗ is commutative, associative and linear
in each variable, so it turns ℓ1(Z) into an abelian Banach algebra.

(vi). If X is a Banach space, let B(X) denote the set of all bounded linear
operators T : X → X with the operator norm

‖T‖ = sup
x∈X, ‖x‖≤1

‖Tx‖.

By [FA 3.3], B(X) is a Banach space. Define a product on B(X) by
ST = S ◦ T . This is clearly associative and bilinear, and if x ∈ X with
‖x‖ ≤ 1 then

‖(ST )x‖ = ‖S(Tx)‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖
so ‖ST‖ ≤ ‖S‖ ‖T‖. Hence B(X) is a Banach algebra. If dimX > 1
then B(X) is not abelian.
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1.2 Invertibility

1.2.1 Definition. A Banach algebra A is unital if A contains an identity
element of norm 1; that is, an element 1 ∈ A such that 1a = a1 = a for all
a ∈ A, and ‖1‖ = 1. We call 1 the unit of A. We sometimes write 1 = 1A to
make it clear that 1 is the unit of A.

If A is a unital Banach algebra and B ⊆ A, we say that B is a unital
subalgebra of A if B is a subalgebra of A which contains the unit of A.

1.2.2 Examples. Of the Banach algebras in Example 1.1.3, only C0(R) is
non-unital. Indeed, it is easy to see that no f ∈ C0(R) is an identity element
for C0(R). On the other hand the constant function taking the value 1 is the
unit for BC (X), and A(D) is a unital subalgebra of C(D). Also, the identity
operator I : X → X, x→ x is the unit for B(X), and is it not hard to check
that the sequence (δn,0)n∈Z is the unit for ℓ1(Z).

1.2.3 Remarks. (i). An algebra can have at most one identity element.

(ii). If (A, ‖ · ‖) is a non-zero Banach algebra with an identity element then
we can define an norm | · | on A under which it is a unital Banach
algebra such that | · | is equivalent to ‖ · ‖, meaning that there are
constants m,M ≥ 0 such that

m|a| ≤ ‖a‖ ≤M |a| for all a ∈ A.

For example, we could take |a| = ‖La : A → A‖ where La is the linear
operator La(b) = ab for a, b ∈ A.

1.2.4 Definition. Let A be a Banach algebra with unit 1. An element a ∈ A
is invertible if ab = 1 = ba for some b ∈ A. It’s easy to see that b is then
unique; we call b the inverse of a and write b = a−1.

We write InvA for the set of invertible elements of A.

1.2.5 Remarks. (i). InvA forms a group under multiplication.

(ii). If a ∈ A is left invertible and right invertible so that ba = 1 and ac = 1
for some b, c ∈ A, then a is invertible.

(iii). If a = bc = cb then a is invertible if and only if b and c are invertible.
It follows by induction that if b1, . . . , bn are commuting elements of A
(meaning that bibj = bjbi for 1 ≤ i, j ≤ n) then b1b2 . . . bn is invertible
if and only if b1, . . . , bn are all invertible.

(iv). The commutativity hypothesis is essential in (iii). For example, if
(en)n≥1 is an orthonormal basis of a Hilbert space H and S ∈ B(H) is
defined by Sen = en+1, n ≥ 1 and S∗ is the adjoint of S (see [FA 4.18])
then S∗S is invertible although S∗ and S are not.
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1.2.6 Examples. (i). If X is a compact topological space then

InvC(X) = {f ∈ C(X) : f(x) 6= 0 for all x ∈ X}.
Indeed, if f(x) 6= 0 for all x ∈ X then we can define g : X → C,
x 7→ f(x)−1. The function g is then continuous [why?] with fg = 1.
Conversely, if x ∈ X and f(x) = 0 then fg(x) = f(x)g(x) = 0 so
fg 6= 1 for all g ∈ C(X), so f is not invertible.

(ii). If X is a Banach space then

InvB(X) ⊆
{
T ∈ B(X) : kerT = {0}

}
.

Indeed, if kerT 6= {0} then T is not injective, so cannot be invertible.

If X is finite-dimensional and kerT = {0} then by linear algebra,
T is surjective, so T is an invertible linear map. Since X is finite-
dimensional, the linear map T−1 is bounded, so T is invertible in B(X).
Hence

InvB(X) =
{
T ∈ B(X) : kerT = {0}

}
if dimX <∞.

On the other hand, if X is infinite-dimensional then we generally have
InvB(X) (

{
T ∈ B(X) : kerT = {0}

}
. For example, let X = H be

an infinite-dimensional Hilbert space with orthonormal basis (en)n≥1.
Consider the operator T ∈ B(H) defined by

Ten = 1
n
en, n ≥ 1.

It is easy to see that kerT = {0}. However, T is not invertible. Indeed,
if S ∈ B(H) with ST = I then Sen = S(nTen) = nSTen = nen, so

‖Sen‖ = n→ ∞ as n→ ∞
and so S is not bounded, which is a contradiction.

1.2.7 Theorem. Let A be a Banach algebra with unit 1. If a ∈ A with
‖a‖ < 1 then 1 − a ∈ InvA and

(1 − a)−1 =
∞∑

n=0

an.

Proof. Since ‖an‖ ≤ ‖a‖n and ‖a‖ < 1, the series
∑∞

n=0 a
n is absolutely

convergent and so convergent by [FA 1.7.8], say to b ∈ A. Let bn be the nth
partial sum of this series and note that

bn(1 − a) = (1 − a)bn = (1 − a)(1 + a+ a2 + · · · + an) = 1 − an+1 → 1

as n→ ∞. So b(1 − a) = (1 − a)b = 1 and so b = (1 − a)−1.
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1.2.8 Corollary. InvA is an open subset of A.

Proof. Let a ∈ InvA and let ra = ‖a−1‖−1. We claim that the open ball
B(a, ra) = {b ∈ A : ‖a − b‖ < ra} is contained in InvA; for if b ∈ B(a, ra)
then ‖a− b‖ < ra and

b = (a− (a− b))a−1a = (1 − (a− b)a−1)a.

Since ‖(a − b)a−1‖ < ra‖a−1‖ < 1, the element 1 − (a − b)a−1 is invertible
by Theorem 1.2.7. Hence b is the product of two invertible elements, so is
invertible. This shows that every element of InvA may be surrounded by an
open ball which is contained in InvA, hence InvA is open.

1.2.9 Corollary. The map θ : InvA → InvA, a 7→ a−1 is a homeomor-
phism.

Proof. Since (a−1)−1 = a, the map θ is a bijection with θ = θ−1. So we only
need to show that θ is continuous.

If a ∈ InvA and b ∈ InvA with ‖a − b‖ < 1
2
‖a−1‖−1 then using the

triangle inequality and the identity

a−1 − b−1 = a−1(b− a)b−1 (⋆)

we have

‖b−1‖ ≤ ‖a−1−b−1‖+‖a−1‖ ≤ ‖a−1‖ ‖a−b‖ ‖b−1‖+‖a−1‖ ≤ 1
2
‖b−1‖+‖a−1‖,

so ‖b−1‖ ≤ 2‖a−1‖. Using (⋆) again, we have

‖θ(a) − θ(b)‖ = ‖a−1 − b−1‖ ≤ ‖a−1‖ ‖a− b‖ ‖b−1‖ < 2‖a−1‖2‖a− b‖,

which shows that θ is continuous at a.

1.3 The spectrum

1.3.1 Definition. Let A be a unital Banach algebra and let a ∈ A. The
spectrum of a in A is

σ(a) = σA(a) = {λ ∈ C : λ1 − a 6∈ InvA}.

We will often write λ instead of λ1 for λ ∈ C.
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1.3.2 Examples. (i). We have σ(λ1) = {λ} for any λ ∈ C.

(ii). Let X be a compact topological space. If f ∈ C(X) then

σ(f) = f(X) = {f(x) : x ∈ X}.

Indeed,

λ ∈ σ(f) ⇐⇒ λ1 − f 6∈ InvC(X)

⇐⇒ (λ1 − f)(x) = 0 for some x ∈ X, by Example 1.2.6(i)

⇐⇒ λ = f(x) for some x ∈ X

⇐⇒ λ ∈ f(X).

(iii). If X is a finite-dimensional Banach space and T ∈ B(X) then

σ(T ) = {λ ∈ C : λ is an eigenvalue of T}.

Indeed,

λ ∈ σ(T ) ⇐⇒ T − λ 6∈ InvB(X)

⇐⇒ ker(λI − T ) 6= {0} by Example 1.2.6(ii)

⇐⇒ (λI − T )(x) = 0 for some nonzero x ∈ X

⇐⇒ Tx = λx for some nonzero x ∈ X

⇐⇒ λ is an eigenvalue of T .

If X is an infinite-dimensional Banach space, then the same argument
shows that σ(T ) contains the eigenvalues of T , but generally this in-
clusion is strict.

We will need the following algebraic fact later on.

1.3.3 Proposition. Let A be a unital Banach algebra and let a, b ∈ A.

(i). If 1 − ab ∈ InvA then 1 − ba ∈ InvA, and

(1 − ba)−1 = 1 + b(1 − ab)−1a.

(ii). σ(ab) \ {0} = σ(ba) \ {0}.

Proof. Exercise.
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To show that the spectrum is always non-empty, we will use a vector-
valued version of Liouville’s theorem:

1.3.4 Lemma. Let X be a Banach space and suppose that f : C → X is
an entire function in the sense that f(µ)−f(λ)

µ−λ
converges in X as µ → λ, for

every λ ∈ C. If f is bounded then f is constant.

Proof. Given a continuous linear functional ϕ ∈ X∗, let g = ϕ ◦ f : C → C.
Since g(µ)−g(λ)

µ−λ
= ϕ(f(µ)−f(λ)

µ−λ
) and |g(λ)| ≤ ‖g‖ ‖f(λ)‖, the function g is entire

and bounded. By Liouville’s theorem it is constant, so ϕ(f(λ)) = ϕ(f(µ))
for all ϕ ∈ X∗ and λ, µ ∈ C. By the Hahn-Banach theorem (see [FA 3.8]),
f(λ) = f(µ) for all λ, µ ∈ C. So f is constant.

1.3.5 Theorem. Let A be a unital Banach algebra. If a ∈ A then σ(a) is a
non-empty compact subset of C with σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}.

Proof. The map i : C → A, λ 7→ λ− a is continuous and

σ(a) = {λ ∈ C : i(λ) 6∈ InvA} = C \ i−1(InvA).

Since InvA is open by Corollary 1.2.8 and i is continuous, i−1(InvA) is open
and so its complement σ(a) is closed.

If |λ| > ‖a‖ then λ−a = λ(1−λ−1a) and ‖λ−1a‖ = |λ|−1‖a‖ < 1 so λ−a is
invertible by Theorem 1.2.7, so λ 6∈ σ(a). Hence σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}.
In particular, σ(a) is bounded as well as closed, so σ(a) is a compact subset
of C.

Finally, we must show that σ(a) 6= ∅. If σ(a) = ∅ then the map

R : C → A, λ 7→ (λ− a)−1

is well-defined. It not hard to show using (⋆) that

R(µ) −R(λ)

µ− λ
= −R(λ)R(µ) for λ, µ ∈ C with λ 6= µ.

Corollary 1.2.9 shows that R is continuous, so we conclude that R is an entire
function (with derivative R′(λ) = −R(λ)2).

Now ‖R(λ)‖ = ‖(λ − a)−1‖ = |λ|−1‖(1 − λ−1a)−1‖ and 1 − λ−1a → 1 as
|λ| → ∞ so, by Corollary 1.2.9, (1 − λ−1a)−1 → 1. Hence ‖R(λ)‖ → 0 as
|λ| → ∞.

Hence R is a bounded entire function, so it is constant by Lemma 1.3.4;
since R(λ) → 0 as |λ| → ∞ we have R(λ) = 0 for all λ ∈ C. This is a
contradiction since R(λ) is invertible for any λ ∈ C.
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The next result says that C is essentially the only unital Banach algebra
which is also a field.

1.3.6 Corollary (The Gelfand-Mazur theorem). If A is a unital Banach
algebra in which every non-zero element is invertible then A = C1A.

Proof. Let a ∈ A. Since σ(a) 6= ∅ there is some λ ∈ σ(a). Now λ1−a 6∈ InvA,
so λ1 − a = 0 and a = λ1 ∈ C1.

1.3.7 Definition. If a is an element of a unital Banach algebra and p ∈ C[z]
is a complex polynomial, say p = λ0 + λ1z + · · · + λnz

n where λ0, λ1, . . . , λn

are complex numbers, then we write

p(a) = λ01 + λ1a+ · · · + λna
n.

1.3.8 Theorem (The spectral mapping theorem for polynomials). If p is a
complex polynomial and a is an element of a unital Banach algebra then

σ(p(a)) = p(σ(a)) = {p(λ) : λ ∈ σ(a)}.

Proof. If p is a constant then this immediate since σ(λ1) = {λ}. Suppose
that n = deg p ≥ 1 and let µ ∈ C. Since C is algebraically closed, we can
write

µ− p = C(λ1 − z) . . . (λn − z)

for some C, λ1, . . . , λn ∈ C. Then

µ− p(a) = C(λ1 − a) . . . (λn − a)

and the factors λi − a all commute. So

µ ∈ σ(p(a)) ⇐⇒ µ− p(a) is not invertible

⇐⇒ some λi − a is not invertible (by Remark 1.2.5(iii))

⇐⇒ some λi is in σ(a)

⇐⇒ σ(a) contains a root of µ− p

⇐⇒ µ = p(λ) for some λ ∈ σ(a).

1.3.9 Definition. Let A be a unital Banach algebra. The spectral radius of
an element a ∈ A is

r(a) = rA(x) = sup
λ∈σA(a)

|λ|.

1.3.10 Remark. We have r(a) ≤ ‖a‖ by Theorem 1.3.5.
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1.3.11 Examples. (i). If X is a compact topological space and f ∈ C(X),
then

r(f) = sup
λ∈σA(f)

|λ| = sup
λ∈f(X)

|λ| = ‖f‖.

(ii). To see that strict inequality is possible, take X = C2 with the usual
Hilbert space norm and let T ∈ B(X) be the operator with matrix(

0 1
0 0

)
. Since det(T − λI) = λ2, the only eigenvalue of T is 0 and so

σ(T ) = {0} by Example 1.3.2(iii). Hence r(T ) = 0 < 1 = ‖T‖.

1.3.12 Theorem (The spectral radius formula). The spectral radius of an
element of a unital Banach algebra is given by

r(a) = lim
n→∞

‖an‖1/n = inf
n≥1

‖an‖1/n.

Proof. If λ ∈ σ(a) and n ≥ 1 then λn ∈ σ(an) by Theorem 1.3.8. So |λ|n ≤
‖an‖ by Theorem 1.3.5, hence |λ| ≤ ‖an‖1/n and so r(a) ≤ infn≥1 ‖an‖1/n.

Consider the function

S : {λ ∈ C : |λ| < 1/r(a)} → A, λ 7→ (1 − λa)−1.

Observe that for |λ| < 1/r(a) we have r(λa) = |λ|r(a) < 1 by Theorem 1.3.8,
so 1 − λa is invertible and S(λ) is well-defined. We can argue as in the
proof of Theorem 1.3.5 to see that S is holomorphic. By Theorem 1.2.7
we have S(λ) =

∑∞
n=0 λ

nan for |λ| < 1/‖a‖. If ϕ ∈ A∗ with ‖ϕ‖ = 1
then the complex-valued function f = ϕ ◦ S is given by the power series
f(λ) =

∑∞
n=0 ϕ(an)λn for |λ| < 1/‖a‖. Moreover, f is holomorphic for

|λ| < 1/r(a), so this power series converges to f(λ) for |λ| < 1/r(a). Hence
for R > r(a) we have

ϕ(an) =
1

2πi

∫

|λ|=1/R

f(λ)

λn+1
dλ

and we obtain the estimate

|ϕ(an)| ≤ 1

2π
· 2π

R
·Rn+1 · sup

|λ|=1/R

|ϕ(S(λ))| ≤ RnM(R)

where M(R) = sup|λ|=1/R ‖S(λ)‖, which is finite by the continuity of S on
the compact set {λ ∈ C : |λ| = 1/R}. Since S(λ) 6= 0 for any λ in the domain
of S, we have M(R) > 0. Hence

lim sup
n≥1

‖an‖1/n ≤ lim sup
n≥1

RM(R)1/n = R
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whenever R > r(a). We conclude that

r(a) ≤ inf
n≥1

‖an‖1/n ≤ lim inf
n≥1

‖an‖1/n ≤ lim sup
n≥1

‖an‖1/n ≤ r(a)

and the result follows.

1.3.13 Corollary. If A is a unital Banach algebra and B is a closed unital
subalgebra of A then rA(b) = rB(b) for all b ∈ B.

Proof. The norm of an element of B is the same whether we measure it in B
or in A. By the spectral radius formula, rA(b) = limn≥1 ‖bn‖1/n = rB(b).

While the spectral radius of an element of a Banach algebra does not
depend if we compute it in a subalgebra, the spectrum itself can change. We
explore this in the next few results.

Suppose that A is a unital Banach algebra and B is a unital Banach
subalgebra of A. If an element of b is invertible in B, then it is invertible
in A; so InvB ⊆ B ∩ InvA. However, this inclusion may be strict, as the
following example shows.

1.3.14 Example. Recall that A(D) is the disc algebra of continuous func-
tions D → C which are holomorphic on D. Note that, by the maximum
modulus principle, supz∈D

|f(z)| = supθ∈[0,2π) |f(eiθ)|. Hence ‖f‖ = ‖f |T‖,
and the map A(D) → C(T), f 7→ f |T is a unital isometric isomorphism. So
we may identify A(D) with A(T) = {f |T : f ∈ A(D)}, which is a closed unital
subalgebra of C(T).

Consider the function f(z) = z for z ∈ D. This is not invertible in A(D)
since f(0) = 0. Hence f |T is not invertible in A(T). However, f is invertible
in C(T) with inverse g : eiθ 7→ e−iθ. So InvA(T) ( A(T) ∩ InvC(T).

1.3.15 Definition. If A is a unital Banach algebra then a subalgebra B ⊆ A
with 1 ∈ B is said to be inverse-closed if InvB = B ∩ InvA; that is, if every
b ∈ B which is invertible in A also has b−1 ∈ B.

Clearly, ifB is an inverse-closed unital subalgebra ofA then σB(b) = σA(b)
for all b ∈ B.

IfK is a non-empty compact subset of C then exactly one of the connected
components of C \K is unbounded. The bounded components of C \K are
called the holes of K. If A is a unital Banach algebra and a ∈ A, let us write

RA(a) = C \ σA(a) = {λ ∈ C : λ− a ∈ InvA}.

This is sometimes called the resolvent set of a. Note that the bounded
connected components of RA(a) are precisely the holes of σA(a).
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1.3.16 Theorem. Let B be a closed subalgebra of a unital Banach algebra A
with 1 ∈ B. If b ∈ B then σB(b) is the union of σA(b) with zero or more of
the holes of σA(b). In particular, if σA(b) has no holes then σB(b) = σA(b).

Proof. Since InvB ⊆ InvA we have RB(b) ⊆ RA(b), and so σA(b) ⊆ σB(b),
for each b ∈ B. We claim that RB(b) is a relatively clopen subset of RA(b).
Since σB(b) is closed by Theorem 1.3.5, RB(b) is open. The map

i : RA(b) → A, λ 7→ (λ− b)−1

is continuous by Corollary 1.2.9, and

RB(b) = {λ ∈ RA(b) : i(λ) = (λ− b)−1 ∈ B} = i−1(B).

Since B is closed, RB(b) is closed.
If G is a connected component of RA(b) then G ∩ RB(b) is either ∅ or

G. For otherwise, since RB(b) is clopen, G ∩RB(b) and G \RB(b) would be
proper clopen subsets of the connected set G, which is impossible. If G is
the unbounded component of RA(b) then, since σB(b) is bounded, we must
have G ∩ σB(b) = ∅. The bounded components of RA(b) are precisely holes
of σA(b). Hence

σB(b) = σA(b) ∪
⋃

{G a hole of σA(b) : G ∩ σB(b) 6= ∅}.

If σA(b) has no holes then this reduces to σB(b) = σA(b).

1.3.17 Definition. Let A be a Banach algebra. If S ⊆ A then the commu-
tant of S in A is

S ′ = {a ∈ A : ab = ba for all b ∈ S}.

The bicommutant of S in A is S ′′ = (S ′)′.
A set S ⊆ A is commutative if ab = ba for all a, b ∈ S. Hence S is

commutative if and only if S ⊆ S ′.

1.3.18 Lemma. Let A be a Banach algebra. If T ⊆ S ⊆ A, then T ′ ⊇ S ′.
Moreover, S ⊆ S ′′ and S ′ = S ′′′.

Proof. Exercise.

1.3.19 Proposition. Let A be a unital Banach algebra and let S ⊆ A.

(i). S ′ is a closed, inverse-closed unital subalgebra of A.

(ii). If S is commutative then so is B = S ′′, and σB(b) = σA(b) for all
b ∈ B.
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Proof. (i) Since multiplication is continuous on A, it is easy to see that the
commutant S ′ is closed. Clearly 1 ∈ S ′, and using the linearity of multi-
plication shows that S ′ is a vector subspace of A, and it is a subalgebra by
associativity. If b ∈ S ′ ∩ InvA then bc = cb for all c ∈ S, so cb−1 = b−1c for
all c ∈ S, so b−1 ∈ S ′ and S ′ is inverse-closed.

(ii) We have S ⊆ S ′, so S ′ ⊇ S ′′ and S ′′ ⊆ S ′′′ by Lemma 1.3.18. Hence
B = S ′′ is commutative. Moreover, B is an inverse-closed subalgebra of A
by (i), so σB(b) = σA(b) for all b ∈ B.

1.3.20 Definition. Let A be a Banach algebra without an identity element.

The unitisation of A is the Banach algebra Ã whose underlying vector space
is A⊕C with the product (a, λ)(b, µ) = (ab+λb+µa, λµ) and norm ‖(a, λ)‖ =

‖a‖ + |λ| for a, b ∈ A and λ, µ ∈ C. Note that Ã is then a unital Banach
algebra containing A (or, more precisely, A× {0}).
1.3.21 Definition. If A has no identity element and a ∈ A, then we define
σA(a) = σ eA(a). In this case we have 0 ∈ σ(A) for all a ∈ A.

1.3.22 Remark. With this definition, many of the important theorems
above apply to non-unital Banach algebras, simply by considering Ã instead
of A. In particular, it is easy to check that non-unital versions of Theo-
rems 1.3.5, 1.3.8 and 1.3.12 hold.

1.4 Quotients of Banach spaces

Recall that if K is a subspace of a complex vector space X, then the quotient
vector space X/K is given by

X/K = {x+K : x ∈ X}
with scalar multiplication λ(x+K) = λx+K, λ ∈ C, x ∈ X

and vector addition (x+K) + (y +K) = (x+ y) +K, x, y ∈ X, λ ∈ C.

The zero vector in X/K is 0 +K = K.

1.4.1 Definition. If K is a closed subspace of a Banach space X then the
quotient Banach space X/K is the vector space X/K equipped with the
quotient norm, defined by

‖x+K‖ = inf
k∈K

‖x+ k‖.

1.4.2 Proposition. Let X be a Banach space and let K be a closed vector
subspace of X. The quotient norm is a norm on the vector space X/K, with
respect to which X/K is complete. Hence the quotient Banach space X/K is
a Banach space.

12



Proof. To see that the quotient norm is a norm, observe that:

• ‖x + K‖ ≥ 0 with equality if and only if inf
k∈K

‖x + k‖ = 0, which is

equivalent to x being in the closure of K; since K is closed, this means
that x ∈ K so x+K = K, the zero vector of X/K.

• If λ ∈ C with λ 6= 0 then

‖λ(x+K)‖ = inf
k∈K

‖λx+ k‖ = |λ| inf
k∈K

‖x+ λ−1k‖

= |λ| inf
k′∈K

‖x+ k‖ = |λ| ‖x+K‖.

• The triangle inequality holds since K = {s+ t : s, t ∈ K} and so

‖(x+K) + (y +K)‖ = ‖x+ y +K‖ = inf
k∈K

‖x+ y + k‖

= inf
s,t∈K

‖x+ y + s+ t‖

≤ inf
s∈K

‖x+ s‖ + inf
t∈K

‖y + t‖

= ‖x+K‖ + ‖y +K‖.

It remains to show that X/K is complete in the quotient norm. For any
x ∈ X, it is not hard to see that:

(i) if ε > 0 then there exists k ∈ K such that ‖x+ k‖ < ‖x+K‖+ ε; and

(ii) ‖x+K‖ ≤ ‖x‖ (since 0 ∈ K).

Let xj ∈ X with
∑∞

j=1 ‖xj + K‖ < ∞. From observation (i), it follows
that there exist kj ∈ K with

∑∞
j=1 ‖xj + kj‖ <∞, so by [FA 1.7.8] the series∑∞

j=1 xj + kj converges in X, say to s ∈ X. By observation (ii),

∥∥∥s+K−
( n∑

j=1

xj +K
)∥∥∥ =

∥∥∥
(
s−

n∑

j=1

xj +kj

)
+K

∥∥∥ ≤
∥∥∥s−

n∑

j=1

xj +kj

∥∥∥ → 0

as n → ∞, so
∑∞

j=1 xj + kj converges to s + K. This shows that every ab-
solutely convergent series in X/K is convergent with respect to the quotient
norm, so X/K is complete by [FA 1.7.8].
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1.5 Ideals, quotients and homomorphisms of Banach

algebras

1.5.1 Definition. An ideal of a Banach algebra A is a vector subspace I
of A such that for all x ∈ I and a ∈ A we have ax ∈ I and xa ∈ I.

1.5.2 Definition. Let I be a closed ideal of a Banach algebra A. The
quotient Banach algebra A/I is the quotient Banach space A/I equipped
with the product (a+ I)(b+ I) = ab+ I for a, b ∈ I.

1.5.3 Theorem. If I is a closed ideal of a Banach algebra A then A/I is a
Banach algebra. If A is abelian then so is A/I. If A is unital then so is A/I,
and 1A/I = 1A + I.

Proof. We saw in Proposition 1.4.2 that A/I is a Banach space. Just as
for quotient rings, the product is well-defined, since if a1 + I = a2 + I and
b1 +I = b2 +I then a1−a2 ∈ I and b1−b2 ∈ I, so a1(b1−b2)+(a1−a2)b2 ∈ I
and so

(a1b1 + I)− (a2b2 + I) = a1b1 − a2b2 + I = a1(b1 − b2) + (a1 − a2)b2 + I = I,

hence a1b1 + I = a2b2 + I. It is easy to see that this product is linear in each
variable.

Let a, b ∈ A. We have

‖a+ I‖ ‖b+ I‖ = inf
y,z∈I

‖a+ y‖ ‖b+ z‖

≥ inf
y,z∈I

‖(a+ y)(b+ z)‖ (by 1.1.1(iii) in A)

= inf
y,z∈I

‖ab+ (az + yb+ yz)‖

≥ inf
x∈I

‖ab+ x‖ (since az + by + yz ∈ I for all y, z ∈ I)

= ‖ab+ I‖ = ‖(a+ I)(b+ I)‖.

Hence the inequality 1.1.1(iii) holds in A/I, and we have shown that A/I is
a Banach algebra.

If A is abelian then (a+ I)(b+ I) = ab+ I = ba+ I = (b+ I)(a+ I) for
all a, b ∈ A, so A/I is abelian. The proof of the final statement about units
is left as an exercise.

1.5.4 Definition. A proper ideal of a Banach algebra A an ideal of A which
is not equal to A. A maximal ideal of A is a proper ideal such which is not
contained in any strictly larger proper ideal of A.
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1.5.5 Lemma. Let A be a unital Banach algebra. If I is an ideal of A, then
I is a proper ideal if and only if I ∩ InvA = ∅.

Proof. We have 1 ∈ InvA, so if I ∩ InvA = ∅ then 1 6∈ I, so I 6= A and I is
a proper ideal. Conversely, if I ∩ InvA 6= ∅, let b ∈ I ∩ InvA. If a ∈ A then
a = (ab−1)b ∈ I, since I is an ideal and b ∈ I. So I = A.

1.5.6 Theorem. Let A be a unital Banach algebra.

(i). If I is a proper ideal of A then the closure I is also a proper ideal of A.

(ii). Any maximal ideal of A is closed.

Proof. (i) The closure of a vector subspace of A is again a vector subspace.
If a ∈ A and xn is a sequence in I converging to x ∈ I then axn → ax and
xna→ xa as n→ ∞. Since each axn and xna is in I, this shows that ax and
xa are in I, which is therefore an ideal of A.

Since I is a proper ideal we have I ∩ InvA = ∅ by Lemma 1.5.5. Since
InvA is open by Corollary 1.2.8, this shows that I ∩ InvA = ∅ so I 6= A.

(ii) Let M be a maximal ideal. Since M ⊆ M and M is a proper ideal
by (i), we must have M = M , so M is closed.

1.5.7 Remarks. (i). Since we know a few results about ideals of rings,
we would like to apply these to ideals of Banach algebras. Any unital
Banach algebra A may be viewed as a unital ring R by ignoring the
norm and scalar multiplication. However, there is a difference in the
definitions: ideals of R are not required to be linear subspaces (since
R has no linear structure) whereas ideals of A are. However, the two
definitions turn out to be equivalent if A is unital. Indeed, an ideal
of the Banach algebra A is clearly an ideal of the ring R. Conversely,
if I is an ideal of the ring R then since λ1 ∈ R for λ ∈ C we have
λx = λ1 · x ∈ I for all x ∈ I, so I is a vector subspace of A with the
ideal property. So I is an ideal of A.

(ii). By [FA 2.16], any proper ideal of a unital Banach algebra A is contained
in a maximal ideal of A.

1.5.8 Definition. Let A and B be Banach algebras. A homomorphism from
A to B is a linear map θ : A → B which is multiplicative in the sense that
θ(ab) = θ(a)θ(b) for all a, b ∈ A.

The kernel of such a homomorphism θ is the set

ker θ = {a ∈ A : θ(a) = 0}.
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If A and B are unital Banach algebras, we say that a homomorphism
θ : A→ B is unital if θ(1A) = 1B.

A bijective homomorphism θ : A → B is an isomorphism. If such an
isomorphism exists then the Banach algebras A and B are isomorphic. It is
easy to see that if θ is an isomorphism then so is θ−1.

1.5.9 Remark. If θ : A → B is a non-zero homomorphism of Banach al-
gebras then ker θ is an ideal of A, which is proper unless θ = 0. If θ is
continuous then ker θ is a closed ideal of A.

1.5.10 Remark. We usually say that two objects are isomorphic if they
have the same structure; that is, if they are the same “up to relabelling”.
However, if two Banach algebras A and B are isomorphic then this tells us
that they have the same structure as algebras, but not necessarily as Banach
algebras, since the norms may not be related.

The strongest notion of “the same Banach algebra up to relabelling” is
isometric isomorphism. Two Banach algebras A and B are isometrically
isomorphic if there is an isomorphism θ : A → B which is also an isometry,
meaning that ‖θ(a)‖ = ‖a‖ for all a ∈ A (compare with [FA 1.3.8]).

1.5.11 Examples. (i). If A is a non-unital Banach algebra then the map

θ : A→ Ã, a 7→ (a, 0) from Definition 1.3.20 is an isometric homomor-

phism. Hence θ(A) is a Banach subalgebra of Ã which is isometrically
isomorphic to A.

(ii). The map A(D) → A(T), f 7→ f |T from Example 1.3.14 is a unital
isometric isomorphism.

1.5.12 Proposition. Let A and B be unital Banach algebras and let θ : A→
B be a unital homomorphism.

(i). θ(InvA) ⊆ InvB, and θ(a)−1 = θ(a−1) for a ∈ InvA.

(ii). For all a ∈ A we have σA(a) ⊇ σB(θ(a)).

(iii). If θ is an isomorphism then σA(a) = σB(θ(a)) for all a ∈ A.

Proof. (i) If a ∈ InvA then θ(a)θ(a−1) = θ(aa−1) = θ(1) = 1 and θ(a−1)θ(a) =
θ(a−1a) = θ(1) = 1, so θ(a) is invertible in B, with inverse θ(a−1).

(ii) If λ ∈ σB(θ(a)) then λ − θ(a) = θ(λ − a) 6∈ InvB so λ − a 6∈ InvA
by (i). Hence λ ∈ σA(a).

(iii) Since θ−1 is a homomorphism, by (ii) we have

σA(a) = σA(θ−1(θ(a))) ⊆ σB(θ(a)) ⊆ σA(a),

and we have equality.
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2 A topological interlude

2.1 Topological spaces

Recall that a topological space is a set X with a topology: a collection T of
subsets of X, known as open sets, such that ∅ and X are open, and finite
intersections and arbitrary unions of open sets are open. We call a set F ⊆ X
closed if its complement X \ F is open.

An open cover C of X is a collection of open subsets of X whose union
is X. A finite subcover of C is a finite subcollection whose union still con-
tains X. To say that X is compact means that every open cover of X has a
finite subcover. Similarly, if Z ⊆ X then an open cover C of Z is a collection
of open subsets whose union contains Z. We say that Z is compact if every
open cover of Z has a finite subcover. If X is compact, then it is easy to
show that any closed subset of X is also compact.

A topological space Y is Hausdorff if, for any two distinct points y1, y2

in Y , there are disjoint open sets G1, G2 ⊆ Y with y1 ∈ G1 and y2 ∈ G2. It
is not hard to show that any compact subset of a Hausdorff space is closed.

If X and Y are topological spaces then a map θ : X → Y is continuous if,
for all open sets G ⊆ Y , the set θ−1(G) is open in X. Taking complements,
we see that θ is continuous if and only if, for all closed K ⊆ Y , the set θ−1(K)
is closed in X. If Z is a compact subset of X and θ : X → Y is continuous,
then θ(Z) is compact.

A homeomorphism from X to Y is a bijection X → Y which is continuous
and has a continuous inverse. If there is a homeomorphism from X to Y ,
we say that X and Y are homeomorphic. If X and Y are homeomorphic
topological spaces then all of their topological properties are identical. In
particular, X is compact if and only if Y is compact.

Recall that if X is a topological space and Z ⊆ X, then the subspace
topology on Z is defined by declaring the open sets of Z to be the sets G∩Z
for G an open set of X. Then Z is a compact subset of X if and only if Z is
a compact topological space (in the subspace topology). Also, it is easy to
see that a subspace of a Hausdorff space is Hausdorff.

2.1.1 Lemma. Let X and Y be topological spaces, and suppose that X is
compact and Y is Hausdorff.

(i). If θ : X → Y is a continuous bijection, then θ is a homeomorphism
onto Y . In particular, Y is compact.

(ii). If θ : X → Y is a continuous injection, then θ(X) (with the subspace
topology from Y ) is homeomorphic to X. In particular, θ(X) is a
compact subset of Y .
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Proof. (i) Let K be a closed subset of X. Since X is compact, K is compact.
Since θ is continuous, θ(K) is compact. A compact subset of a Hausdorff
space is closed, so θ(K) is closed. Hence θ−1 is continuous, which shows that
θ is a homeomorphism. So Y is homeomorphic to the compact space X; so
Y is compact.

(ii) The subspace θ(X) of the Hausdorff space Y is Hausdorff. Let

θ̃ : X → θ(X), x 7→ θ(x), which is a continuous bijection. By (i), θ̃ is a
homeomorphism and θ(X) is compact.

2.2 Subbases and weak topologies

2.2.1 Definition. If T1 and T2 are two topologies on a set X then we say
that T1 is weaker than T2 if T1 ⊆ T2.
[We might also say that T1 is smaller, or coarser than T2].

2.2.2 Definition. Let (X, T ) be a topological space. We say that a collection
of open sets S ⊆ T is a subbase for T if T is the weakest topology containing
S. If the topology T is understood, we will also say that S is a subbase for
the topological space X.

2.2.3 Remark. Suppose that T is a topology on X and S ⊆ T . It is not
hard to see that the collection of unions of finite intersections of sets in S
forms a topology on X which is no larger than T . [The empty set is the
union of zero sets, and X is the intersection of zero sets, so ∅ and X are
in this collection.] From this, it follows that that following conditions are
equivalent:

(i). S is a subbase for T ;

(ii). every set in T is a union of finite intersections of sets in S;

(iii). a set G ⊆ X is in T if and only if for every x ∈ G, there exist finitely
many sets S1, S2, . . . , Sn ∈ S such that

x ∈ S1 ∩ S2 ∩ · · · ∩ Sn ⊆ G.

By the equivalence of (i) and (ii), if X,Y are topological spaces and S is
a subbase for X, then a map f : Y → X is continuous if and only if f−1(S)
is open for all S ∈ S.
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2.2.4 Proposition. Let X be a set, let I be an index set and suppose that
Xi is a topological space and fi : X → Xi for each i ∈ I. The collection

S = {f−1
i (G) : i ∈ I, G is an open subset of Xi}

is a subbase for a topology on X, and this is the weakest topology such that
fi is continuous for all i ∈ I.

Proof. Let T be the collection of all unions of finite intersections of sets
from S. Then T is a topology on X and S is a subbase for T by the previous
remark. If T ′ is any topology on X such that fi : X → Xi is continuous
for all i ∈ I then by the definition of continuity, f−1

i (G) ∈ T ′ for all open
subsets G ⊆ Xi, so S ⊆ T ′. Since T is the weakest topology containing S
this shows that T ⊆ T ′, so T is the weakest topology such that each fi is
continuous.

This allows us to introduce the following terminology.

2.2.5 Definition. If X is a set, Xi is a topological space and fi : X → Xi

for i ∈ I then the weakest topology on X such that fi is continuous for each
i ∈ I is called the weak topology induced by the family {fi : i ∈ I}.
2.2.6 Proposition. Suppose that X is a topological space with the weak
topology induced by a family of maps {fi : i ∈ I} where fi : X → Xi and Xi

is a topological space for each i ∈ I.
If Y is a topological space then a map g : Y → X is continuous if and

only if fi ◦ g : Y → Xi is continuous for all i ∈ I.

Proof. The sets f−1
i (G) for i ∈ I and G an open subset of Xi form a subbase

for X, by Proposition 2.2.4. Hence, by Remark 2.2.3,

g is continuous ⇐⇒ g−1(f−1
i (G)) is open for all i ∈ I and open G ⊆ Xi

⇐⇒ (fi ◦ g)−1(G) is open for all i ∈ I and open G ⊆ Xi

⇐⇒ fi ◦ g is continuous for all i ∈ I.

2.2.7 Lemma. Suppose that X is a topological space with the weak topology
induced by a family of mappings {fi : X → Xi}i∈I . If Y ⊆ X then the weak
topology induced by the family {fi|Y : Y → Xi}i∈I is the subspace topology
on Y .

Proof. Let gi = fi|Y for i ∈ I. Observe that g−1
i (G) = f−1

i (G) ∩ Y for G an
open subset of Xi. It is not hard to check that the collection of all sets of
this form is a subbase for both the weak topology induced by {gi}i∈I and for
the subspace topology on Y . Hence these topologies are equal.
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2.3 The product topology and Tychonoff’s theorem

If S is a collection of open subsets of X, let us say that an open cover is an
S-cover if every set in the cover is in S.

2.3.1 Theorem (Alexander’s subbase lemma). Let X be a topological space
with a subbase S. If every S-cover of X has a finite subcover, then X is
compact.

Proof. Suppose that the hypothesis holds but that X is not compact. Then
there is an open cover with no finite subcover; ordering such covers by in-
clusion we can apply Zorn’s lemma [FA 2.15] to find an open cover C of X
without a finite subcover that is maximal among such covers.

Note that C ∩ S cannot cover X by hypothesis, so there is some x ∈ X
which does not lie in any set in the collection C ∩ S. On the other hand, C
does cover X so there is some G ∈ C \ S with x ∈ G. Since G is open and
S is a subbase, by Remark 2.2.3 we have

x ∈ S1 ∩ · · · ∩ Sn ⊆ G

for some S1, . . . , Sn ∈ S. For i = 1, . . . , n we have x ∈ Si so Si 6∈ C. By the
maximality of C, there is a finite subcover Ci of C∪{Si}. Let Di = Ci\{Si}.
Then D = D1 ∪ · · · ∪Dn covers X \ (S1 ∩ · · · ∩ Sn). So D ∪ {G} is a finite
subcover of C, which is a contradiction. So X must be compact.

2.3.2 Definition. Let {Xi : i ∈ I} be an indexed collection of sets. Just as
in [FA 2.4], we define the (Cartesian) product of this collection to be the set

∏

i∈I

Xi = {f : I →
⋃

i∈I

Xi : f(i) ∈ Xi for all i ∈ I}.

If each Xi is a topological space then the product topology on X =
∏

i∈I Xi

is the weak topology induced by the family {πi : i ∈ I} where the map πi is
the “evaluation at i” map

πi : X → Xi, f 7→ f(i).

2.3.3 Remark. If f ∈ ∏
i∈I Xi then it is often useful to think of f as the

“I-tuple” (f(i))i∈I . In this notation, we have

∏

i∈I

Xi = {(xi)i∈I : xi ∈ Xi for all i ∈ I}

and πi : (xi)i∈I 7→ xi is the projection onto the ith coordinate.
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2.3.4 Theorem (Tychonoff’s theorem).
The product of a collection of compact topological spaces is compact.

Proof. Let Xi be a compact topological space for i ∈ I and let X =
∏

i∈I Xi

with the product topology. Consider the collection

S = {π−1
i (G) : i ∈ I, G is an open subset of Xi}.

By Proposition 2.2.4, S is a subbase for the topology on X.
Let C be an S-cover of X. For i ∈ I, let Ci = {G ⊆ Xi : π

−1
i (G) ∈ C},

which is a collection of open subsets of Xi.
We claim that there is i ∈ I such that Ci is a cover of Xi. Otherwise,

for every i ∈ I there is some xi ∈ Xi not covered by Ci. Consider the map
f ∈ X defined by f(i) = xi. By construction, f does not lie in π−1

i (G) for
any i ∈ I and G ∈ Ci. However, since C ⊆ S, every set in C is of this form,
so C cannot cover f . This contradiction establishes the claim.

So we can choose i ∈ I so that Ci covers Xi. Since Xi is compact, there
is finite subcover Di of Ci. But then {π−1

i (G) : G ∈ Di} covers X, and this
is a finite subcover of C.

This shows that every S-cover of X has a finite subcover. By Theo-
rem 2.3.1, X is compact.

2.4 The weak* topology

Let X be a Banach space. Recall from [FA 3.2] that the dual space X∗ of X
is the Banach space of continuous linear functionals ϕ : X → C, with the
norm ‖ϕ‖ = sup

‖x‖≤1

|ϕ(x)|.

2.4.1 Definition. For x ∈ X, let Jx : X∗ → C, ϕ 7→ ϕ(x). The weak*
topology on X∗ is the weak topology induced by the family {Jx : x ∈ X}.

2.4.2 Remarks. (i). For x ∈ X, the map Jx is simply the canonical image
of x in X∗∗. In particular, each Jx is continuous when X∗ is equipped
with the usual topology from its norm, so the weak* topology is weaker
(that is, no stronger) than the norm topology on X∗. In fact, the weak*
topology is generally strictly weaker than the norm topology.

(ii). The sets {ψ ∈ X∗ : |ψ(x) − ϕ(x)| < ε} for ϕ ∈ X∗, ε > 0 and x ∈ X
form a subbase for the weak* topology.

(iii). By (ii), it is easy to see that X∗ with the weak* topology is a Hausdorff
topological space.
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2.4.3 Theorem (The Banach-Alaoglu theorem). Let X be a Banach space.
The closed unit ball of X∗ is compact in the weak* topology.

Proof. For x ∈ X let Dx = {λ ∈ C : |λ| ≤ ‖x‖}. Since Dx is closed and
bounded, it is a compact topological subspace of C. Let D =

∏
x∈X Dx

with the product topology. By Tychonoff’s theorem 2.3.4, D is a compact
topological space.

Let X∗
1 = {ϕ ∈ X∗ : ‖ϕ‖ ≤ 1} denote the closed unit ball of X∗, with the

subspace topology that it inherits from the weak* topology on X∗. We must
show that X∗

1 is compact.
If ϕ is any linear map X → C, then ϕ ∈ X∗

1 if and only if |ϕ(x)| ≤ ‖x‖
for all x ∈ X, i.e. ϕ(x) ∈ Dx for all x ∈ X. Thus X∗

1 ⊆ D. Moreover, if
x ∈ X and ϕ ∈ X∗

1 then

Jx(ϕ) = ϕ(x) = πx(ϕ),

so Jx|X∗

1
= πx|X∗

1
. By Lemma 2.2.7, the topology on X∗

1 is equal to the
subspace topology when we view it as a subspace of D.

Since D is compact, it suffices to show that X∗
1 is a closed subset of D.

Now

X∗
1 = {ϕ ∈ D : ϕ is linear} =

⋂

α,β∈C,
x,y∈X

{ϕ ∈ D : παx+βy(ϕ) = απx(ϕ) + βπy(ϕ)}.

By the definition of the product topology on D, the maps πx : D → Dx are
continuous for each x ∈ X. Linear combinations of continuous functions are
continuous, so for x, y, z ∈ X and α, β ∈ C, the function ρ = πz−απx−βπy is
continuousD → C. Hence ρ−1(0) is closed. Each set in the above intersection
is of this form, so X∗

1 is closed.
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3 Unital abelian Banach algebras

3.1 Characters and maximal ideals

Let A be a unital abelian Banach algebra.

3.1.1 Definition. A character on A is a non-zero homomorphism A → C;
that is, a non-zero linear map τ : A→ C which satisfies τ(ab) = τ(a)τ(b) for
a, b ∈ A. We write Ω(A) for the set of characters on A.

3.1.2 Example. Let A = C(X) where X is a compact topological space.
For each x ∈ X, the map εx : A→ C, f 7→ f(x) is a character on A.

3.1.3 Remark. This definition makes sense even if A is not abelian. How-
ever, Ω(A) is often not very interesting in that case.

For example, if A = Mn(C) and n > 1 then Ω(A) = ∅. Indeed, it is not
hard to show that A is spanned by {ab − ba : a, b ∈ A}. If ϕ : A → C is a
homomorphism, then ϕ(ab − ba) = ϕ(a)ϕ(b) − ϕ(b)ϕ(a) = 0, so ϕ = 0 by
linearity; hence Ω(A) = ∅.

3.1.4 Lemma. If τ ∈ Ω(A) then τ is continuous. More precisely,

‖τ‖ = τ(1) = 1.

In particular, Ω(A) is a subset of the closed unit ball of A∗.

Proof. Observe that τ(1) = τ(12) = τ(1)2, so τ(1) ∈ {0, 1}. If τ(1) = 0 then
τ(a) = τ(a1) = τ(a)τ(1) = 0 for any a ∈ A, so τ = 0. But τ ∈ Ω(A) so
τ 6= 0, which is a contradiction. So τ(1) = 1.

We have τ(InvA) ⊆ Inv C = C \ {0} by 1.5.12(i). For any a ∈ A we have
τ(τ(a)1−a) = τ(a)τ(1)−τ(a) = 0, so τ(a)1−a 6∈ InvA. Hence τ(a) ∈ σ(a),
so |τ(a)| ≤ ‖a‖ by Theorem 1.3.5 and so ‖τ‖ ≤ 1. Since |τ(1)| = 1 we
conclude that ‖τ‖ = 1.

Any τ ∈ Ω(A) is a linear map A → C by definition, and we have shown
that it continuous with norm 1. Hence Ω(A) is contained in the closed unit
ball of A∗.

3.1.5 Definition. The Gelfand topology on Ω(A) is the subspace topology
obtained from the weak* topology on A∗.

We will always equip Ω(A) with this topology.
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3.1.6 Theorem. Ω(A) is a compact Hausdorff space.

Proof. We observed in Remark 2.4.2(iii) that the weak* topology is Haus-
dorff, so Ω(A) is a Hausdorff space. By Lemma 3.1.4, Ω(A) is contained in the
unit ball of A∗, which is compact in the weak* topology by Theorem 2.4.3.
A closed subset of a compact set is compact, so it suffices to show that Ω(A)
is weak* closed in A∗. But

Ω(A) = {τ ∈ A∗ : τ(1) = 1, τ(ab) = τ(a)τ(b) for a, b ∈ A}
= {τ ∈ A∗ : τ(1) = 1} ∩

⋂

a,b∈A

{τ ∈ A∗ : τ(ab) − τ(a)τ(b) = 0}

= J−1
1 (1) ∩

⋂

a,b∈A

(Jab − Ja · Jb)
−1(0).

Each evaluation functional Ja : A∗ → C, τ 7→ τ(a) is weak* continuous, so
the maps Jab − Ja · Jb are also weak* continuous. Hence the sets in this
intersection are all weak* closed, so Ω(A) is weak* closed.

3.1.7 Lemma. Let A be a unital abelian Banach algebra.

(i). If τ ∈ Ω(A) then ker τ is a maximal ideal of A.

(ii). If M is a maximal ideal of A, then the map C → A/M , λ 7→ λ1 +M
is an isometric isomorphism.

Proof. (i) Let τ ∈ Ω(A). Since τ is a non-zero homomorphism, its kernel
I = ker τ is a proper ideal of A. Suppose that J is an ideal of A with I ( J
and let a ∈ J \ I. Then τ(a) 6= 0, so b = τ(a)−1a ∈ J and τ(b) = 1. Since
τ(1) = 1 by Lemma 3.1.4, we have 1 − b ∈ I, so 1 = b + 1 − b ∈ J . By
Lemma 1.5.5, J = A. This shows that I is not contained in any strictly
larger proper ideal of A, so I is a maximal ideal of A.

(ii) Let M be a maximal ideal of A. By Theorems 1.5.6(ii) and 1.5.3,
A/M is unital Banach algebra with unit 1 + M . If a + M is a non-zero
element of A/M then a ∈ A \M . Let I = {ab +m : m ∈ M, b ∈ A}. Since
A is abelian and M is an ideal, it is easy to see that I is an ideal of A, and
M ( I. Since M is a maximal ideal, I = A. So 1 ∈ I, and ab + m = 1 for
some b ∈ A and m ∈M . Now

(a+M)(b+M) = ab+M = ab+m+M = 1 +M,

which is the unit of A/M . Hence b+M = (a+M)−1 and a+M is invertible
in A/M . By the Gelfand-Mazur theorem 1.3.6, A/M = C1A/M = C(1 +M).

It is very easy to check that the map C → A/M , λ 7→ λ1 + M is an
isometric homomorphism, and we have just shown that it is surjective. Hence
it is an isometric isomorphism.
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3.1.8 Theorem. Let A be a unital abelian Banach algebra. The mapping

τ 7→ ker τ

is a bijection from Ω(A) onto the set of maximal ideals of A.

Proof. If τ ∈ Ω(A) then ker τ is a maximal ideal of A, by Lemma 3.1.7(i).
Hence the mapping is well-defined.

The mapping τ 7→ ker τ is injective, since if τ1 and τ2 are in Ω(A) with
ker τ1 = ker τ2, then for any a ∈ A we have a − τ2(a)1 ∈ ker τ2 = ker τ1 so
τ1(a− τ2(a)1) = 0, hence τ1(a) = τ2(a); so τ1 = τ2.

We now show that the mapping is surjective. Let M be a maximal ideal
of A, and let q : A→ A/M , a 7→ a+M be the corresponding quotient map.
Observe that q is a homomorphism and ker q = M . By Lemma 3.1.7(ii), the
map θ : C → A/M , λ 7→ λ1+M is an isomorphism. Let τ = θ−1 ◦q : A→ C.
Since τ is the composition of two homomorphisms, it is a homomorphism,
and τ(1) = θ−1(q(1)) = θ−1(1 +M) = 1, so τ 6= 0. Hence τ ∈ Ω(A). Since θ
is an isomorphism, we have ker τ = ker q = M .

This shows that τ 7→ ker τ is a bijection from Ω(A) onto the set of all
maximal ideals of A.

3.1.9 Examples. (i). Let X be a compact Hausdorff space. For x ∈ X,
the map εx : C(X) → C, f 7→ f(x) is a nonzero homomorphism, so
{εx : x ∈ X} ⊆ Ω(C(X)). We claim that we have equality.

For x ∈ X, let Mx = ker εx = {f ∈ C(X) : f(x) = 0}, which is a
maximal ideal of C(X) by Theorem 3.1.8. Let I be an ideal of C(X).
If I 6⊆ Mx for every x ∈ X, then for each x ∈ X, there is fx ∈ I with
fx 6= 0. Since I is an ideal, gx = |fx|2 = fxfx ∈ I, and since gx is
continuous and non-negative with gx(x) > 0, there is an open set Ux

with x ∈ Ux and gx(y) > 0 for all y ∈ Ux. As x varies over X, the open
sets Ux cover X. Since X is compact, there is n ≥ 1 and x1, . . . , xn ∈ X
such that Ux1

, . . . , Uxn
cover X. Let g = gx1

+ · · ·+gxn
. Then g ∈ I and

g(x) > 0 for all x ∈ X, so g is invertible in C(X). Hence I = C(X).

This shows that every proper ideal I of C(X) is contained in Mx for
some x ∈ X. Let τ ∈ Ω(C(X)). Since ker τ is a maximal (proper) ideal,
we must have ker τ = Mx for some x ∈ X, so τ = εx by Theorem 3.1.8.

Consider the map θ : X → Ω(C(X)), x 7→ εx. We have just shown that
this is surjective. Since X is compact and Hausdorff, C(X) separates
the points ofX by Urysohn’s lemma. Hence if εx = εy then f(x) = f(y)
for all f ∈ C(X), so x = y. Hence θ is a bijection.
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We claim that θ is a homeomorphism. Indeed, θ is continuous since for
f ∈ C(X) and x ∈ X we have

Jf (θ(x)) = Jf (εx) = εx(f) = f(x),

so Jf ◦ θ (or, more precisely, Jf |Ω(C(X)) ◦ θ) is continuous X → C for
every f ∈ C(X). By Proposition 2.2.6, θ is continuous. Since X is
compact and Ω(C(X)) is Hausdorff, Lemma 2.1.1 shows that θ is a
homeomorphism.

(ii). Recall that A(D) denotes the disc algebra. If w ∈ D then εw : A(D) →
C, f 7→ f(w) is a character on A(D).

Again, we claim that every character arises in this way. To see this,
consider the function z ∈ A(D) defined by z(w) = w, w ∈ D. If
τ ∈ Ω(A(D)) then τ(1) = 1 and |τ(z)| ≤ ‖z‖ = 1, so τ(z) ∈ D.
It is not hard to show that the polynomials D → C form a dense
unital subalgebra of A(D). If p : D → C is a polynomial then p =
λ01 + λ1z + · · · + λnz

n for constants λi, so τ(p) = λ0 + λ1τ(z) + · · · +
λnτ(z)

n = p(τ(z)). Since the polynomials are dense in A(D), this
shows that τ(f) = f(τ(z)) for all f ∈ A(D), so τ = ετ(z). Hence

Ω(A(D)) = {εw : w ∈ D}. Just as in (i), it is easy to see that the map
w 7→ εw is a homeomorphism D → Ω(A(D)).

(iii). Recall the abelian Banach algebra ℓ1(Z) with product ∗ from Exam-
ple 1.1.3(v). For n ∈ Z, let en = (δmn)m∈Z. Then en ∈ ℓ1(Z), and the
linear span of {en : n ∈ Z} is dense in ℓ1(Z). Moreover, it is easy to
check that en ∗ em = en+m for n,m ∈ Z. In particular, e0 ∗ em = em,
hence e0 is the unit for ℓ1(Z).

If τ ∈ Ω(ℓ1(Z)) then τ(e0) = 1. Moreover, en∗e−n = e0 so en = (e−n)−1

and |τ(en)| ≤ ‖en‖ = 1 for each n ∈ Z, so

1 ≤ |τ(e−n)|−1 = |τ((e−n)−1)| = |τ(en)| ≤ 1.

So we have equality. In particular, |τ(e1)| = 1, so τ(e1) ∈ T. Since
en = en

1 , we have τ(en) = τ(e1)
n. Hence if x ∈ ℓ1(Z) then

τ(x) = τ

( ∑

n∈Z

xnen

)
=

∑

n∈Z

xnτ(e1)
n.

So τ is determined by the complex number τ(e1) ∈ T. Conversely, given
any z ∈ T, there is a character τz ∈ Ω(ℓ1(Z)) with τz(e1) = z. Indeed,
let A0 = span{en : n ∈ Z}, which is a dense subalgebra of ℓ1(Z). Let

26



τ0 : A0 → C be the unique linear map such that τ0(en) = zn for all
n ∈ Z. If x, y ∈ A0, then

τ0(x ∗ y) = τ0

( ∑

m,n∈Z

xmyn−men

)
=

∑

m,n∈Z

xmyn−mz
n

=
∑

m,n∈Z

xmz
m yn−mz

n−m = τ0(x)τ0(y),

so τ0 is a homomorphism, and

|τ0(x)| =
∣∣∣
∑

n∈Z

xnz
n
∣∣∣ ≤

∑

n∈Z

|xn| = ‖x‖,

so τ0 is continuous. Hence τ0 extends to a continuous linear homomor-
phism τz : ℓ1(Z) → C, which is a character on ℓ1(Z). Clearly, τz(e1) = z.

This shows that the map θ : T → Ω(ℓ1(Z)), z 7→ τz is a bijection. We
claim that θ is a homeomorphism. Indeed, θ is continuous since for
x ∈ ℓ1(Z) and z ∈ T we have

Jx(θ(z)) = Jx(τz) = τz(x) =
∑

n∈Z

xnz
n.

Since x ∈ ℓ1(Z), this series converges absolutely (for z ∈ T). The partial
sums of the series are continuous functions T → C, so z 7→ Jx(θ(z))
is continuous T → C. By Proposition 2.2.6, θ is continuous. Since T

is compact and Ω(ℓ1(Z)) is Hausdorff, Lemma 2.1.1 shows that θ is a
homeomorphism.

The next lemma is purely algebraic.

3.1.10 Lemma. Let A be a unital abelian Banach algebra and let a ∈ A.
The following are equivalent:

(i). a 6∈ InvA;

(ii). a ∈ I for some proper ideal I of A;

(iii). a ∈M for some maximal ideal M of A.

Proof. (i) =⇒ (ii): If a 6∈ InvA, consider the set I = {ab : b ∈ A}. Since A
is abelian, this is an ideal of A, and since A is unital we have a = a1 ∈ I. If
1 ∈ I then ab = 1 for some b ∈ A, so a ∈ InvA, a contradiction. So 1 6∈ I
and I is a proper ideal.

(ii) =⇒ (iii): Suppose that a ∈ I where I is a proper ideal of A. By
Remark 1.5.7(ii), I ⊆M for some maximal ideal M of A; so a ∈M .

(iii) =⇒ (i): If M is a maximal ideal of A then M is a proper ideal, so
M ∩ InvA = ∅ by Lemma 1.5.5. Hence a 6∈ InvA for every a ∈M .
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3.1.11 Corollary. Let A be a unital abelian Banach algebra and let a ∈ A.

(i). a ∈ InvA if and only if τ(a) 6= 0 for all τ ∈ Ω(A).

(ii). σ(a) = {τ(a) : τ ∈ Ω(A)}.
(iii). r(a) = sup

τ∈Ω(A)

|τ(a)|.

Proof. (i) We have:

a ∈ InvA ⇐⇒ a 6∈M for all maximal ideals M of A, by Lemma 3.1.10

⇐⇒ a 6∈ ker τ for all τ ∈ Ω(A), by Theorem 3.1.8

⇐⇒ τ(a) 6= 0 for all τ ∈ Ω(A).

(ii) This follows from the equivalences:

λ ∈ σ(a) ⇐⇒ λ− a 6∈ InvA

⇐⇒ τ(λ− a) = 0 for some τ ∈ Ω(A), by (i)

⇐⇒ λ = τ(a) for some τ ∈ Ω(A), since τ(λ) = λ by Lemma 3.1.4.

(iii) follows immediately from (ii) and the definition of r(a).

3.2 The Gelfand representation

3.2.1 Definition. Let A be a unital abelian Banach algebra. For a ∈ A, the
Gelfand transform of a is the mapping

â : Ω(A) → C, τ 7→ τ(a).

In other words, â = Ja|Ω(A).

3.2.2 Examples. (i). Let X be a compact Hausdorff space. We have seen
that the map X → Ω(C(X)), x 7→ εx is a homeomorphism. If f ∈
C(X) then

f̂ : Ω(C(X)) → C, εx 7→ εx(f) = f(x).

This means that, if we identify Ω(C(X)) with X by pretending that

x = εx, then f̂ = f .

(ii). We have seen that Ω(ℓ1(Z)) can be identified with T, by pretending that
z ∈ T is the same as the character τz : ℓ1(Z) → C, x 7→ ∑

n∈Z
xnz

n.
Hence for x ∈ ℓ1(Z), we have

x̂ : Ω(ℓ1(Z)) → C, τz 7→ τz(x) =
∑

n∈Z

xnz
n.

28



If we write z = eiθ and xn = x(n) then this takes the form

x̂(eiθ) =
∑

n∈Z

x(n)einθ,

so x̂ maybe viewed as the inverse Fourier transform of x.

3.2.3 Theorem. Let A be a unital abelian Banach algebra. For each a ∈ A,
the Gelfand transform â is in C(Ω(A)). Moreover, the mapping

γ : A→ C(Ω(A)), a 7→ â

is a unital, norm-decreasing (and hence continuous) homomorphism, and for
each a ∈ A we have

σA(a) = σC(Ω(A))(â) = {â(τ) : τ ∈ Ω(A)} and r(a) = ‖â‖.

Proof. By the definition of the topology on Ω(A), each â is in C(Ω(A)). It
is easy to see that γ is a homomorphism, and it is unital by Lemma 3.1.4.
The identification of σA(a) with σC(Ω(A))(â) follows from Corollary 3.1.11(ii)
and Example 1.3.2(ii). Now r(a) = ‖â‖ ≤ ‖a‖ by Corollary 3.1.11(iii) and
Remark 1.3.10, so γ is linear and norm-decreasing, hence continuous.

3.2.4 Definition. If A is a unital abelian Banach algebra then the unital
homomorphism γ : A→ C(Ω(A)), a 7→ â is called the Gelfand representation
of A.

3.2.5 Remark. In general, the Gelfand representation is neither injective
nor surjective. For example, the Gelfand representation of the disc algebra
is the inclusion A(D) → C(D) which is not surjective.
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4 C*-algebras

4.1 Definitions and examples

4.1.1 Definition. Let A be a Banach algebra. An involution on A is a map
A→ A, a 7→ a∗ such that for all a, b ∈ A and λ ∈ C we have:

(i). (λa)∗ = λa∗ and (a+ b)∗ = a∗ + b∗ (conjugate linearity);

(ii). (ab)∗ = b∗a∗; and

(iii). (a∗)∗ = a.

A C*-algebra is a Banach algebra A equipped with an involution such that
the C*-condition holds:

‖a‖2 = ‖a∗a‖ for all a ∈ A.

4.1.2 Remark. We usually write a∗∗ instead of (a∗)∗.

4.1.3 Examples. (i). The zero Banach algebra {0} is a C*-algebra.

(ii). The complex numbers C form a C*-algebra under the usual Banach
space norm ‖λ‖ = |λ| and the involution λ∗ = λ.

(iii). If X is a topological space, then BC (X) is a C*-algebra under the
involution f ∗(x) = f(x). In particular, if X is compact, then BC (X) =
C(X) is a C*-algebra.

(iv). If H is a Hilbert space then B(H) is a C*-algebra under the involution
T 7→ T ∗ defined by the property that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H
(see [FA ]).

(v). If A is a C*-algebra then a C*-subalgebra of A is a Banach subalgebra
B ⊆ A that is closed under the involution; in other words, B is a closed
linear subspace of A such that whenever a, b ∈ A we have ab ∈ A and
a∗ ∈ A. Clearly, any C*-subalgebra of a C*-algebra is a C*-algebra.

4.1.4 Proposition. Let A be a C*-algebra.

(i). If A has an identity element 1 then 1∗ = 1, and if A is non-zero then
‖1‖ = 1.

(ii). If A is unital then a ∈ InvA ⇐⇒ a∗ ∈ InvA, and for a ∈ InvA we
have (a∗)−1 = (a−1)∗.

(iii). ‖a∗‖ = ‖a‖ for all a ∈ A.
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(iv). The involution A→ A, a 7→ a∗ is continuous.

(v). σ(a∗) = σ(a)∗ = {λ : λ ∈ σ(a)} for all a ∈ A.

Proof. (i) We have

1 = (1∗)∗ = (1∗1)∗ = 1∗1∗∗ = 1∗1 = 1∗.

Hence ‖1‖2 = ‖1∗1‖ = ‖1‖; if A 6= {0} then ‖1‖ 6= 0 and we can cancel to
obtain ‖1‖ = 1.

(ii) If a ∈ InvA then a∗(a−1)∗ = (a−1a)∗ = 1∗ = 1 and (a−1)∗a∗ =
(aa−1)∗ = 1∗ = 1. Hence a∗ is invertible, with inverse (a−1)∗. Conversely, if
a∗ ∈ InvA then a∗∗ = a ∈ InvA by the same argument.

(iii) This is trivial for a = 0. If a 6= 0 then ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖,
which on cancelling gives ‖a‖ ≤ ‖a∗‖. Hence ‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖ ≤ ‖a∗‖, so
we have equality.

(iv) If an, a ∈ A with an → a then ‖a∗n−a∗‖ = ‖(an−a)∗‖
(iii)
= ‖an−a‖ → 0

as n→ ∞, so the involution is continuous.

(v) Without loss of generality, suppose that A is unital. For any λ ∈ C,

λ ∈ σ(a∗) ⇐⇒ λ1−a∗ (i)
= (λ1−a)∗ 6∈ InvA

(ii)⇐⇒ λ1−a 6∈ InvA ⇐⇒ λ ∈ σ(a).

Hence σ(a∗) = σ(a)∗.

4.1.5 Definition. Let A be a C*-algebra.
An element a ∈ A is normal if a commutes with a∗.
An element a ∈ A is hermitian if a = a∗.
An element p ∈ A is a projection if p = p∗ = p2.
If A is unital then an element u ∈ A is unitary if uu∗ = u∗u = 1 (that is,

if u is invertible and u−1 = u∗).

4.1.6 Remark. Clearly, projections are hermitian, and both unitary and
hermitian elements are normal.

4.1.7 Proposition. Let A be a C*-algebra.

(i). If a ∈ A then a∗a is hermitian.

(ii). If p ∈ A is a non-zero projection then ‖p‖ = 1.

(iii). Every a ∈ A may be written uniquely in the form a = h + ik where h
and k are hermitian elements of A, called the real and imaginary parts
of a.
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Proof. (i) If h = a∗a then h∗ = (a∗a)∗ = a∗a∗∗ = a∗a = h, so h is hermitian.

(ii) We have ‖p‖2 = ‖p∗p‖ = ‖p2‖ = ‖p‖. Since ‖p‖ 6= 0 we may cancel
to obtain ‖p‖ = 1.

(iii) We have a = h + ik where h = 1
2
(a + a∗) and k = 1

2i
(a − a∗), as

is easily verified. If h + ik = h′ + ik′ where h, h′, k, k′ are hermitian, then
i(k′ − k) = h− h′ = (h− h′)∗ =

(
i(k′ − k)

)∗
= −i(k′ − k), hence h = h′ and

k = k′, demonstrating uniqueness.

4.1.8 Lemma. If A is a unital C*-algebra and τ ∈ A∗ with ‖τ‖ ≤ 1 and
τ(1) = 1, then τ(h) ∈ R for all hermitian elements h ∈ A.

Proof. Suppose that τ(h) = x + iy where x, y ∈ R. Observe that for t ∈ R

we have τ(h+ it1) = τ(h) + it = x+ i(y + t), so

x2+(y+t)2 = |τ(h+it)|2 ≤ ‖h+it‖2 = ‖(h−it)(h+it)‖ = ‖h2+t2‖ ≤ ‖h2‖+t2

and so x2 +2yt ≤ ‖h2‖ for all t ∈ R. This forces y = 0, so τ(h) = x ∈ R.

4.1.9 Proposition. If A is a unital abelian C*-algebra then τ(a∗) = τ(a)
for all a ∈ A and τ ∈ Ω(A).

Proof. If τ ∈ Ω(A) then ‖τ‖ = τ(1) = 1 by Lemma 3.1.4. If a ∈ A then
a = h+ ik for some hermitian h, k ∈ A by Proposition 4.1.7(iii), so τ(h) and
τ(k) are real by Lemma 4.1.8. Hence

τ(a∗) = τ(h− ik) = τ(h) − iτ(k) = τ(h) + iτ(k) = τ(a).

4.1.10 Corollary. Let A be a unital C*-algebra.

(i). If h ∈ A is hermitian then σA(h) ⊆ R.

(ii). If u ∈ A is unitary then σA(u) ⊆ T.

Proof. If a ∈ A and a commutes with a∗ then let C = {a, a∗}′′. This is a
closed unital abelian subalgebra of A and σA(a) = σC(a) = {τ(a) : τ ∈ Ω(C)}
by Proposition 1.3.19 and Theorem 3.2.3. The commutant of a self-adjoint
subset of A is self-adjoint (that is, it is closed under the involution), so C is
self-adjoint. Hence C is a unital abelian C*-subalgebra of A.

(i) If a = h is hermitian then τ(a) ∈ R for all τ ∈ Ω(C) by Proposi-
tion 4.1.9, which establishes the result.

(ii) If a = u is unitary then by Proposition 4.1.9 we have

|τ(u)|2 = τ(u)∗τ(u) = τ(u∗)τ(u) = τ(u∗u) = τ(1) = 1

for every τ ∈ Ω(C), so σA(u) ⊆ T.
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4.1.11 Corollary. Let A be a unital C*-algebra and let B ⊆ A be a C*-
subalgebra with 1 ∈ B. If b ∈ B then σB(b) = σA(b).

Proof. If b is hermitian then σA(b) ⊆ R by Corollary 4.1.10(i). Therefore
σA(b) has no holes, so σB(b) = σA(b) by Theorem 1.3.16.

If b is any element of B∩ InvA and if a is the inverse of b in A then b∗b is
invertible in A with inverse aa∗. Since b∗b is hermitian, the first paragraph
shows that b∗b is invertible in B; so aa∗ ∈ B. Hence aa∗b∗ ∈ B and baa∗b∗ =
aa∗b∗b = 1, so b is invertible in B with inverse aa∗b∗. Hence b ∈ InvB.

This shows that InvB = B ∩ InvA, so σB(b) = σA(b) for any b ∈ B.

4.1.12 Proposition.

If a is a hermitian element of a C*-algebra then ‖a‖ = r(a).

Proof. Since a = a∗ we have ‖a‖2 = ‖a∗a‖ = ‖a2‖, so for n ≥ 1 we have
‖a‖2n

= ‖a2n‖ by induction. Hence, by Theorem 1.3.12,

r(a) = lim
n→∞

‖a2n‖1/2n

= ‖a‖.

4.1.13 Definition. If A and B are C*-algebras then a ∗-homomorphism
θ : A→ B is a homomorphism of Banach algebras which respects the involu-
tion: θ(a∗) = θ(a)∗ for all a ∈ A. If A and B are unital and θ(1) = 1 then we
say that θ is unital. An invertible ∗-homomorphism is called a ∗-isomorphism.

4.1.14 Proposition. Let A and B be unital C*-algebras and let θ : A → B
be a unital ∗-homomorphism.

(i). θ(InvA) ⊆ InvB, and θ(a)−1 = θ(a−1) for a ∈ InvA.

(ii). For all a ∈ A we have σA(a) ⊇ σB(θ(a)).

(iii). θ is continuous; in fact, ‖θ(a)‖ ≤ ‖a‖ for all a ∈ A.

(iv). If θ is a ∗-isomorphism then θ is an isometry and σA(a) = σB(θ(a))
for all a ∈ A.

Proof. (i) and (ii) are special cases of Proposition 1.5.12.

(iii) Let a ∈ A. We have

‖θ(a)‖2 = ‖θ(a)∗θ(a)‖ = rB(θ(a)∗θ(a)) by Proposition 4.1.12

= rB(θ(a∗a))

≤ rA(a∗a) by (ii)

= ‖a∗a‖ by Proposition 4.1.12

= ‖a‖2.
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So ‖θ(a)‖ ≤ ‖a‖ for all a ∈ A. Since θ is a linear map, this shows that θ is
continuous (with ‖θ‖ ≤ 1).

(iv) If θ is a ∗-isomorphism then θ is a bijective ∗-homomorphism, from
which it is easy to see that θ−1 is also a ∗-homomorphism. By (iii) both θ
and θ−1 are continuous linear maps with norm no greater than 1, so

‖a‖ = ‖θ−1(θ(a))‖ ≤ ‖θ(a)‖ ≤ ‖a‖

for each a ∈ A. Hence we have equality throughout and θ is an isometry. We
showed that σA(a) = σB(θ(a)) for all a ∈ A in Proposition 1.5.12.

4.2 The Stone-Weierstrass theorem

4.2.1 Lemma. If m ∈ N then there is a sequence of polynomials p1, p2, p3, . . .
with real coefficients such that 0 ≤ pn(t) ≤ 1 for n ≥ 1 and 0 ≤ t ≤ 1, and

pn → 0 uniformly on [0, 1
2m

] and pn → 1 uniformly on [ 2
m
, 1].

Proof. A calculus exercise shows that if N ∈ N then

1 − (1 − x)N ≤ Nx and (1 − x)N ≤ 1

Nx
for each x ∈ (0, 1).

Let pn(t) = 1 − (1 − tn)mn

. We have 0 ≤ pn(t) ≤ 1 for t ∈ [0, 1], and

sup
t∈[0,1/2m]

|pn(t)| = sup
t∈[0,1/2m]

1 − (1 − tn)mn ≤ sup
t∈[0,1/2m]

(mt)n ≤ 2−n → 0 as n→ ∞,

and similarly,

sup
t∈[2/m,1]

|1−pn(t)| = sup
t∈[2/m,1]

(1−tn)mn ≤ sup
t∈[2/m,1]

1

(mt)n
≤ 2−n → 0 as n→ ∞.

Let X be a compact Hausdorff space, and let C(X,R) denote the set of
continuous functions X → R. This is a real Banach space under the uniform
norm [FA 1.7.2], and it is easy to check that the pointwise product turns
it into a real Banach algebra. The basic definitions we made for complex
Banach algebras carry over simply by changing C to R, so we may talk of
subalgebras and unital subalgebras of C(X,R).

If A ⊆ C(X,R) (or A ⊆ C(X)), we say that A separates the points of X
if for every pair of distinct points x, y ∈ X, there is some f ∈ A such that
f(x) 6= f(y).
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4.2.2 Theorem (The real-valued Stone-Weierstrass theorem). Let X be a
compact Hausdorff topological space and let A ⊆ C(X,R). If A is a unital
subalgebra of C(X,R) which separates the points of X, then A is uniformly
dense in C(X,R).

Proof. We will write statements such as “f ≤ 1” to mean f(x) ≤ 1 for all
x ∈ X, and “f ≤ 1 on K” to mean that f(x) ≤ 1 for all x ∈ K. We split
the proof into several steps.

(i). If x, y ∈ X with x 6= y then there is a function f ∈ A with f ≥ 0 such
that f(x) = 0 and f(y) > 0.

Since A separates the points of X, there is a function g ∈ A with
g(x) 6= g(y). Let f = (g − g(x)1)2. Since A is a unital algebra, f ∈ A,
and clearly f ≥ 0. Moreover, f(x) = 0 and f(y) > 0.

(ii). If L is a compact subset of X and x ∈ X \ L then there is some f ∈ A
with 0 ≤ f ≤ 1 such that f(x) = 0 and f(y) > 0 for all y ∈ L.

By (i), for each y ∈ L there is a function fy ∈ A such that fy ≥ 0,
fy(x) = 0 and fy(y) > 0. Since fy is continuous, there is an open set
Uy containing y such that fy > 0 on Uy. As y varies over L, the sets
Uy cover L. Since L is compact, there are y1, . . . , yk ∈ L such that
Uy1

, . . . , Uyk
cover L. Let f0 = fy1

+ · · · + fyk
and let f = f0/‖f0‖.

Then f ∈ A, 0 ≤ f ≤ 1, f(x) = 0 and f(y) > 0 for y ∈ L.

(iii). If K,L are disjoint compact subsets of X then there is a function f ∈ A
with 0 ≤ f ≤ 1 such that f ≤ 1

4
on K and f ≥ 3

4
on L.

Let x ∈ K. By (ii), there is a function gx ∈ A such that 0 ≤ gx ≤ 1,
gx(x) = 0, and gx > 0 on L. Since L is compact, gx(L) is compact,
so is contained in a set of the form [s, t] for some s > 0. Hence there
is m ∈ N (depending on x) such that gx ≥ 2

m
on L. For x ∈ K, let

Ux = {z ∈ X : gx(z) <
1

2m
}. Since x ∈ Ux, these open sets cover K,

so by compactness there are x1, . . . , xk ∈ K such that Ux1
, . . . , Uxk

cover K.

By Lemma 4.2.1, for i = 1, . . . , k there is a polynomial p (depending
on i) such that if we write fi = p(gxi

), then 0 ≤ fi ≤ 1, fi ≤ 1
4

on Uxi

and fi ≥ (3
4
)1/k on L. Since p is a polynomial and gxi

∈ A, we have
fi ∈ A.

Now let f = f1f2 . . . fk. Then f ∈ A and f has the desired properties.

(iv). If f ∈ C(X,R) then there is g ∈ A such that ‖f − g‖ ≤ 3
4
‖f‖.

We may assume (by considering f/‖f‖) that ‖f‖ = 1. Let h ∈ A be
the function obtained by applying (iii) to K = {x ∈ X : f(x) ≤ −1

4
}
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and L = {x ∈ X : f(x) ≥ 1
4
}, and let g = h − 1

2
. Since 1

4
≤ g ≤ 1

2

on L, we have |f − g| ≤ 3
4

on L; similarly, |f − g| ≤ 3
4

on K. Since
−1

2
≤ g ≤ 1

2
and −1

4
≤ f ≤ 1

4
on X \ (K ∪ L) we have |f − g| ≤ 3

4

on X \ (K ∪ L). Hence ‖f − g‖ ≤ 3
4
.

(v). A is uniformly dense in C(X,R).

Let f ∈ C(X,R). By (iv), there is g1 ∈ A with ‖f − g1‖ ≤ 3
4
‖f‖.

Applying (iv) to the function f − g1, we obtain a function g2 ∈ A with
‖f − g1 − g2‖ ≤ 3

4
‖f − g1‖ ≤ (3

4
)2‖f‖. Continuing in this manner, we

obtain functions g1, g2, g3, . . . ∈ A such that

‖f − (g1 + · · · + gn)‖ ≤ (3
4
)n‖f‖ → 0 as n→ ∞.

Since g1 + · · · + gn ∈ A, this shows that f is in the uniform closure
of A.

4.2.3 Theorem (The complex Stone-Weierstrass theorem). Let X be a com-
pact Hausdorff topological space and let A ⊆ C(X). If A is a unital ∗-
subalgebra of C(X) which separates the points of X, then A is uniformly
dense in C(X).

Proof. For f ∈ C(X), let f1(x) = Re(f(x)) and f2(x) = Im(f(x)). Then
f1, f2 ∈ C(X,R). Moreover, f1 = 1

2
(f + f ∗) and f2 = 1

2i
(f − f ∗) are in A

since A is a complex vector space which is closed under the ∗-operation.
Consider the set A1 = {f1 : f ∈ A}. Since A separates the points of X,

if x, y ∈ X with x 6= y then there is f ∈ A such that f(x) 6= f(y). Hence
either f1(x) 6= f1(y) or f2(x) 6= f2(y). If f1(x) 6= f1(y) then f1 is a function
in A1 separating x and y, and if f2(x) 6= f2(y) then g = −if = f2 − if1 ∈ A
and f2 = g1 is a function in A1 separating x and y.

This shows that A1 separates the points of X, and it is easy to see that A1

is a unital subalgebra of C(X,R). By the real-valued Stone-Weierstrass the-
orem, A1 is uniformly dense in C(X,R).

If f ∈ C(X) then f = f1 + if2. Given ε > 0 there is a function g1 ∈ A1

with ‖f1−g1‖∞ < ε/2 and a function g2 ∈ A1 with ‖f2−g2‖∞ < ε/2. Hence
g = g1 + ig2 ∈ A and ‖f − g‖∞ ≤ ‖f1 − g1‖∞ + ‖i(f2 − g2)‖∞ < ε, so A is
uniformly dense in C(X).

4.3 Abelian C*-algebras and the continuous functional

calculus

We now apply Gelfand’s theory of abelian unital Banach algebras (§3) to
show that, up to isometric ∗-isomorphism, every unital abelian C*-algebra is
of the form C(X) for some compact Hausdorff space X.
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4.3.1 Theorem (The Gelfand-Naimark theorem). If A is a unital abelian
C*-algebra then the Gelfand representation of A,

γ : A→ C(Ω(A)), a 7→ â

is a unital isometric ∗-isomorphism of A onto C(Ω(A)).

Proof. Theorem 3.2.3 tells us that γ is a unital, norm-decreasing homomor-
phism with ‖γ(a)‖ = r(a). Moreover, for a ∈ A and τ ∈ Ω(A) we have

â∗ (τ) = τ(a∗) = τ(a) = â(τ) = (â)∗(τ)

by Proposition 4.1.9, so γ(a∗) = γ(a)∗ and γ is a ∗-homomorphism. Now a∗a
is hermitian by Proposition 4.1.7(i), so by Proposition 4.1.12,

‖γ(a)‖2 = ‖γ(a)∗γ(a)‖ = ‖γ(a∗a)‖ = r(a∗a) = ‖a∗a‖ = ‖a‖2.

Hence γ is an isometry.
It remains to show that γ is surjective, for which we appeal to the Stone-

Weierstrass theorem. Recall that Ω(A) is a compact Hausdorff space by
Theorem 3.1.6. Since γ is a unital ∗-homomorphism, its image γ(A) is a
unital ∗-subalgebra of C(Ω(A)). If τ1, τ2 ∈ Ω(A) with τ1 6= τ2 then there is
a ∈ A with τ1(a) 6= τ2(a), hence â(τ1) 6= â(τ2) and so γ(A) separates the
points of Ω(A). By the Stone-Weierstrass theorem 4.2.3, γ(A) is dense in
C(Ω(A)). Since γ is a linear isometry its range is closed. Hence

γ(A) = γ(A) = C(Ω(A)).

4.3.2 Corollary. If A is a unital abelian C*-algebra and a, b ∈ A with τ(a) =
τ(b) for all τ ∈ Ω(A), then a = b.

Proof. â = b̂, so a = b by the Gelfand-Naimark theorem.

4.3.3 Definition. If S is a subset of a C*-algebra A, then we write C∗(S)
for the smallest C*-subalgebra of A containing S. In particular, if A is a
unital C*-algebra and a ∈ A then we will write C∗(1, a) = C∗({1, a}).

4.3.4 Lemma. Let A be a C*-algebra and let S ⊆ A.

(i). The linear span of the elements of the form an1

1 an2

2 . . . ank

k for k ≥ 1,
n1, . . . , nk ≥ 1 and ai ∈ S or a∗i ∈ S for 1 ≤ i ≤ k is dense in C∗(S).

(ii). Suppose that A is unital and that B is another unital C*-algebra. If
A = C∗(S) and θ1, θ2 are two unital ∗-homomorphisms A → B such
that θ1(a) = θ2(a) for all a ∈ S, then θ1 = θ2.
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Proof. (i) Clearly, any C*-algebra containing S must also contain every ele-
ment of the given form, hence C∗(S) contains the closed linear span of such
elements. Conversely, it is easy to see that the closed linear span of these
elements forms a C*-algebra containing S, so this C*-algebra is equal to
C∗(S).

(ii) Since θ1 and θ2 are unital ∗-homomorphisms, they are continuous by
Proposition 4.1.14(iii), and we have θ1(b) = θ2(b) for any b = an1

1 a
n2

2 . . . ank

n

with ai ∈ S or a∗i ∈ S for 1 ≤ i ≤ k. Since θ1 and θ2 are linear, they agree
on the linear span of such elements, which is dense by (i). Continuous maps
agreeing on a dense subset of their domain are equal, so θ1 = θ2.

4.3.5 Lemma. Let A be a unital C*-algebra. If a is a normal element of A
then C∗(1, a) is a unital abelian C*-algebra.

Proof. Exercise.

We can now prove a generalisation of Proposition 4.1.12.

4.3.6 Corollary. If a is a normal element of a unital C*-algebra A then
r(a) = ‖a‖.

Proof. Let B = C∗(1, a). By Corollary 1.3.13, r(a) = rA(a) = rB(a). By the
Gelfand-Naimark theorem 4.3.1, if γ : B → C(Ω(B)) is the Gelfand repre-
sentation of B then ‖a‖ = ‖γ(a)‖ = rB(a) = r(a).

4.3.7 Lemma. Suppose that a is a normal element of a unital C*-algebra, let
Ω = Ω(C∗(1, a)) and let γ : C∗(1, a) → C(Ω) be the Gelfand representation
of C∗(1, a). The map â = γ(a) : Ω → C is a homeomorphism of Ω onto σ(a).

Proof. By Lemma 3.1.4 and Proposition 4.1.9, every τ ∈ Ω is a unital ∗-
homomorphism C∗(1, a) → C. If â(τ1) = â(τ2) for some τ1, τ2 ∈ Ω then
τ1(a) = τ2(a) and τ1(1) = 1 = τ2(1). Taking S = {1, a} in Lemma 4.3.4(ii)
we see that τ1 = τ2. Hence â is injective.

The map â is continuous by the definition of the topology on Ω. More-
over, Ω is compact by Theorem 3.1.6 and â(Ω) = σ(a) is Hausdorff. By
Lemma 2.1.1, â is a homeomorphism onto σ(a).

4.3.8 Lemma. Suppose that X and Y are compact Hausdorff topological
spaces and ψ : X → Y is a homeomorphism. The map ψt : C(Y ) → C(X),
f 7→ f ◦ ψ is an isometric unital ∗-isomorphism.

Proof. Exercise.
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4.3.9 Theorem (The continuous functional calculus). Let a be a normal
element of a unital C*-algebra A. There is a unique unital ∗-homomorphism
θa : C(σ(a)) → A such that θa(z) = a where z ∈ C(σ(a)) is the function
z(λ) = λ for λ ∈ σ(a). Moreover, θa is an isometric ∗-isomorphism onto
C∗(1, a).

Proof. Suppose that θ1 and θ2 are two unital ∗-homomorphisms C(σ(a)) → A
with θ1(z) = θ2(z) = a. Since z(λ) = z(µ) if and only if λ = µ, the
function z separates the points of σ(a), so C∗({1, z}) is a closed separating
unital ∗-subalgebra of C(σ(a)). By the Stone-Weierstrass theorem 4.2.3,
C∗({1, z}) = C(σ(a)), so θ1 = θ2 by Lemma 4.3.4(ii). This proves the
uniqueness statement.

Let Ω = Ω(C∗(1, a)), let γ : C∗(1, a) → C(Ω) be the Gelfand represen-
tation of C∗(1, a) and let â = γ(a). By the Gelfand-Naimark theorem 4.3.1
and the last two lemmas, γ and (â)t : C(σ(a)) → C(Ω) are both isometric
unital ∗-isomorphisms. Consider the map θa : C(σ(a)) → C∗(1, a) given by
θa = γ−1 ◦ (â)t:

C(σ(a)) C∗(1, a)
θa //C(σ(a))

C(Ω)

(â)t

��?
??

??
??

??
??

?

C(Ω)

C∗(1, a)

γ−1

??������������

Since it is the composition of two isometric ∗-isomorphisms, θa is an isometric
∗-isomorphism onto C∗(1, a).

4.3.10 Definition. If a is a normal element of a unital C*-algebra A and
f ∈ C(σ(a)) then we write f(a) for the element θa(f) ∈ A.

4.3.11 Remark. If p = λ0 + λ1z + · · · + λnz
n is a complex polynomial

on σ(a), then θa(p) is equal to the element p(a) defined in Definition 1.3.7,
because θa is a unital homomorphism with θa(z) = a. So this new notation
is consistent.

4.3.12 Remark. This notation is quite convenient. By way of example, we
use it to restate the fact that θa is a ∗-homomorphism. For any f, g ∈ C(σ(a))
and µ ∈ C, we have

(f + g)(a) = f(a) + g(a), (µf)(a) = µ f(a),

(fg)(a) = f(a)g(a) and f ∗(a) = f(a)∗

where the functions f + g, µf, fg and f ∗ are given by applying the usual
pointwise operations in the C*-algebra C(σ(a)).

39



4.3.13 Theorem (Spectral mapping for the continuous functional calculus).
If a is a normal element of a unital C*-algebra A and f ∈ C(σ(a)) then

σ(f(a)) = f(σ(a)) = {f(λ) : λ ∈ σ(a)}.

Proof. Since θa is a unital ∗-isomorphism of C(σ(a)) onto C∗(1, a), we have

σA(f(a)) = σC∗(1,a)(f(a)) by Corollary 4.1.11

= σC∗(1,a)(θa(f)) by the definition of f(a)

= σC(σ(a))(f) by Proposition 4.1.14(iv)

= f(σ(a)) by Example 1.3.2(ii).

4.4 Positive elements of C*-algebras

Let us write R+ for the non-negative real numbers.

4.4.1 Definition. Let A be a C*-algebra. If a ∈ A then we say that a is
positive and write a ≥ 0 if a is hermitian with σ(a) ⊆ R+. The set of positive
elements of A will be denoted by A+ = {a ∈ A : a ≥ 0}.
4.4.2 Example. In the case A = C(X) where X is a compact Hausdorff
space, we have

C(X)+ = {f ∈ C(X) : f(x) ∈ R+ for x ∈ X}
= {f ∈ C(X) : f = f ∗ and ‖f − t‖ ≤ t for some t ∈ R+}
= {g∗g : g ∈ C(X)}.

4.4.3 Corollary. Let A be a unital C*-algebra. For every a ∈ A+ there is a
unique element b ∈ A+ with b2 = a.

Proof. Since σ(a) ⊆ R+, the function f : σ(a) → C, t 7→
√
t is well-defined,

continuous and takes values in R+. Hence we can define b = f(a), and since
f = f ∗ we have b∗ = f ∗(a) = f(a) = b so b is hermitian. By Theorem 4.3.13,
σ(b) = f(σ(a)) ⊆ R+, so b ∈ A+. Since f 2 = z is the identity function
on σ(a), by Theorem 4.3.9 we have b2 = f(a)2 = (f 2)(a) = z(a) = a. This
establishes the existence of b ∈ A+ with b2 = a.

To see that b is the unique element with these properties, suppose that
c ∈ A+ with c2 = a. Then ac = c3 = ca, so B = C∗({1, a, c}) is a unital
abelian C*-algebra and b = f(a) ∈ C∗({1, a}) ⊆ B. If τ ∈ Ω(B) then

τ(b)2 = τ(b2) = τ(a) = τ(c2) = τ(c)2;

since b, c ∈ A+ we have τ(b), τ(c) ≥ 0, so τ(b) = τ(c). By Corollary 4.3.2,
b = c.
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4.4.4 Definition. If A is a unital C*-algebra and a ∈ A+ then we call the
element b ∈ A+ with b2 = a the positive square root of a, and write it as a1/2.

4.4.5 Lemma. Let A be a unital C*-algebra.

(i). If a is a hermitian element of A then a2 ≥ 0.

(ii). If a is a hermitian element of A then a ≥ 0 if and only if ‖a − t‖ ≤ t
for some t ∈ R+.

(iii). If a, b ∈ A with a ≥ 0 and b ≥ 0 then a+ b ≥ 0.

(iv). If a ∈ A with a ≥ 0 and −a ≥ 0 then a = 0.

(v). If a ∈ A and −a∗a ≥ 0 then a = 0.

Proof. (i) Since σ(a) ⊆ R by Corollary 4.1.10(i), the spectral mapping theo-
rem 1.3.8 gives σ(a2) = {λ2 : λ ∈ σ(a)} ⊆ R+, so a2 ≥ 0.

(ii) If a ≥ 0 then σ(a) ⊆ [0, t] where t = r(a) ∈ R+. By Theorem 1.3.8
we have σ(a − t) = σ(a) − t ⊆ [−t, 0] and a − t is hermitian, so we have
‖a− t‖ = r(a− t) ≤ t by Proposition 4.1.12.

Conversely, if a = a∗ and ‖a − t‖ ≤ t for some t ∈ R+ then σ(a − t) ⊆
[−t, t], so σ(a) = σ(a− t) + t ⊆ [0, 2t] by Theorem 1.3.8. Hence a ≥ 0.

(iii) Clearly, a+ b is hermitian, and by (ii) there exist s, t ∈ R+ such that
‖a− s‖ ≤ s and ‖b− t‖ ≤ t. By the triangle inequality,

‖a+ b− (s+ t)‖ ≤ ‖a− s‖ + ‖b− t‖ ≤ s+ t,

so a+ b ≥ 0 by (ii).

(iv) We have σ(a) ⊆ R+ and σ(−a) = −σ(a) ⊆ R+, so σ(a) = {0}. Hence
‖a‖ = r(a) = 0 by Proposition 4.1.12, so a = 0.

(v) Using Proposition 4.1.7(iii), write a = h + ik where h and k are
hermitian elements of A. By Proposition 1.3.3(ii), −aa∗ is also positive.
Now a∗a + aa∗ = 2(h2 + k2), so a∗a = 2(h2 + k2) − aa∗ ≥ 0 by (i) and (iii).
By (iv), a∗a = 0, so ‖a‖2 = ‖a∗a‖ = 0 and a = 0.

4.4.6 Theorem. If A is a unital C*-algebra then A+ = {a∗a : a ∈ A}.
Proof. If b ∈ A+ then b = a2 = a∗a where a = b1/2, so A+ ⊆ {a∗a : a ∈ A}.

It remains to show that if a ∈ A then b = a∗a ≥ 0. By Proposi-
tion 4.1.7(i), b is hermitian. Consider the three functions z, z+, z− ∈ C(σ(b))
given by

z(λ) = λ, z+(λ) =

{
λ if λ ≥ 0

0 if λ < 0
and z−(λ) =

{
0 if λ ≥ 0

−λ if λ < 0
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Observe that z±(σ(b)) ⊆ R+, z = z+−z− and z+z− = 0. Thus, writing b+ =
z+(b) and b− = z−(b), we have b± ≥ 0 by Theorem 4.3.13, and b = b+ − b−

and b+b− = 0 by Theorem 4.3.9.
Let c = ab−. We have

−c∗c = −b−a∗ab− = −b−(b+ − b−)b− = (b−)3 ≥ 0.

By Lemma 4.4.5(v), c = 0, so (b−)3 = 0. Hence σ(b−) = {0}; since b− is
hermitian, Proposition 4.1.12 shows that b− = 0, so b = b+ ≥ 0.

4.4.7 Definition. If a, b ∈ A then let us write a ≤ b if b− a ≥ 0.

4.4.8 Remark. It follows from parts (iii) and (iv) of Lemma 4.4.5 that the
relation ≤ is a partial order on A.

4.4.9 Lemma. If A is a unital C*-algebra and a ∈ A+ then a ≤ ‖a‖1.
Proof. Exercise.

4.4.10 Corollary. Let A be a unital C*-algebra.

(i). If a, b ∈ A with a ≤ b then c∗ac ≤ c∗bc for any c ∈ A.

(ii). If a, b ∈ A then b∗a∗ab ≤ ‖a‖b∗b.
Proof. (i) Let d = (b − a)1/2. Then c∗bc − c∗ac = c∗d2c = (dc)∗(dc) ≥ 0 by
Theorem 4.4.6.

(ii) We have a∗a ≤ ‖a‖21 by Lemma 4.4.9, so b∗a∗ab ≤ b∗(‖a‖21)b =
‖a‖2b∗b by (i).

4.5 The GNS representation

If V is a vector space, recall that a positive semi-definite sesquilinear form
on V is a mapping (·, ·) : V × V → C such that

(x, x) ≥ 0, (λx+ µy, z) = λ(x, z) + µ(y, z) and (y, x) = (x, y)

for all x, y, z ∈ V and λ, µ ∈ C. If this mapping also satisfies

(x, x) = 0 =⇒ x = 0

then we say that it is a positive definite, and it is then an inner product on V
(see [FA 4.1]).

You will probably have seen the next result proven for inner products,
but perhaps not for positive semi-definite sesquilinear forms. The proof is
basically the same, though.
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4.5.1 Lemma (The Cauchy-Schwarz inequality). Let V be a vector space
and let (·, ·) : V × V → C be a positive semi-definite sesquilinear form. Then

|(x, y)|2 ≤ (x, x) (y, y) for all x, y ∈ V .

Proof. For λ ∈ C we have

0 ≤ (λx− y, λx− y) = |λ|2(x, x) − λ(x, y) − λ(y, x) + (y, y).

Taking λ = t(x, y) for t ∈ R gives

p(t) = t2|(x, y)|2(x, x) − 2t|(x, y)|2 + (y, y) ≥ 0 for all t ∈ R.

Observe that p(t) is a polynomial in t. If p(t) is constant then (x, y) = 0
and we are done. Otherwise, |(x, y)|2 6= 0 and since all non-constant linear
polynomials take negative values, p(t) must have degree 2.

Since p(t) ≥ 0 for all t ∈ R, its discriminant “b2 − 4ac” is not positive.
Hence 4|(x, y)|4 − 4|(x, y)|2(x, x)(y, y) ≤ 0, so |(x, y)|2 ≤ (x, x)(y, y).

4.5.2 Definition. Let A be a unital C*-algebra. We say that a linear func-
tional τ : A→ C is positive if τ(a) ≥ 0 for all a ∈ A+.

4.5.3 Remark. If τ is a positive linear functional on A and a, b ∈ A with
a ≤ b (see Remark 4.4.8) then b − a ≥ 0 so τ(b − a) = τ(b) − τ(a) ≥ 0, so
τ(a) ≤ τ(b). Thus positive linear functionals are order-preserving.

4.5.4 Lemma. Let A be a unital C*-algebra and let τ be a positive linear
functional on A.

(i). τ(a∗) = τ(a) for all a ∈ A.

(ii). |τ(a)| ≤ τ(1) ‖a‖ for all a ∈ A. Hence τ ∈ A∗ and ‖τ‖ = τ(1).

Proof. (i) If h is a hermitian element of A then σ(h) ⊆ [−t,∞) for some
t ≥ 0, so h+ t1 ≥ 0. Hence τ(h+ t1) = τ(h) + tτ(1) ≥ 0. Since τ(1) ≥ 0, we
must have τ(h) ∈ R. Now if a ∈ A then a = h+ ik for hermitian elements h
and k, so τ(a∗) = τ(h− ik) = τ(h) − iτ(k) = τ(h) + iτ(k) = τ(a).

(ii) If a ∈ A then a∗a ≥ 0 by Theorem 4.4.6, so a∗a ≤ ‖a∗a‖1 = ‖a‖21 by
Lemma 4.4.9. Hence τ(a∗a) ≤ τ(‖a‖21) = τ(1)‖a‖2.

Consider the map (·, ·) : A×A→ C given by (a, b) = τ(b∗a). Using (i) it
is easy to check that this is a positive semi-definite sesquilinear form, so by
the Cauchy-Schwarz inequality we have

|τ(a)|2 = |(a, 1)|2 ≤ (1, 1) (a, a) = τ(1) τ(a∗a) ≤ τ(1)2‖a‖2.

Hence |τ(a)| ≤ τ(1)‖a‖, and the result follows.
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4.5.5 Lemma. Let A be a unital C*-algebra and let τ ∈ A∗. Then τ is
positive if and only if ‖τ‖ = τ(1).

Proof. If τ is positive then ‖τ‖ = τ(1) by Lemma 4.5.4(ii). Conversely,
suppose that ‖τ‖ = τ(1). Multiplying τ by a positive constant if necessary,
we may assume that ‖τ‖ = τ(1) = 1. By Lemma 4.1.8, τ(a) is real whenever
a is hermitian. If a ≥ 0 and ‖a‖ ≤ 1 then ‖1 − a‖ = r(1 − a) ≤ 1. Hence

|1 − τ(a)| = |τ(1 − a)| ≤ 1.

Since τ(a) is real, this shows that τ(a) ≥ 0 so τ is positive.

4.5.6 Definition. Let A be a unital C*-algebra. A state on A is a positive
linear functional of norm 1. We write S(A) for the set of states of A. Thus
by the preceding lemma,

S(A) = {τ ∈ A∗ : ‖τ‖ = τ(1) = 1}.

4.5.7 Remark. If A is an abelian unital C*-algebra then Ω(A) ⊆ S(A)
by Lemma 3.1.4. Thus states generalise the characters in the abelian case.
Moreover, if we turn S(A) into a topological space by giving it the subspace
topology from the weak* topology on A∗, then S(A) = J−1

1 (1) ∩ A∗
1 is a

compact Hausdorff space.

4.5.8 Lemma. Let A be a unital C*-algebra. If a is a hermitian element
of A then there is a state τ ∈ S(A) with |τ(a)| = ‖a‖.
Proof. Let B = C∗(1, a), which is a unital abelian C*-algebra. By Corol-
lary 3.1.11(ii), there is τ0 ∈ Ω(B) with |τ0(a)| = r(a), and r(a) = ‖a‖ by
Proposition 4.1.12. Moreover, we have τ0(1) = 1 = ‖τ0‖ by Lemma 3.1.4.

By the Hahn-Banach theorem [FA 3.6], we can extend τ0 to a functional
τ ∈ A∗ with ‖τ‖ ≤ 1. Since τ(1) = τ0(1) = 1 we have ‖τ‖ = τ(1) = 1 so
τ ∈ S(A), and ‖a‖ = |τ0(a)| = |τ(a)|.
4.5.9 Lemma. Let A be a unital C*-algebra. For every τ ∈ S(A) there is a
Hilbert space H and a ∗-homomorphism π : A→ B(H) such that

τ(a∗a) ≤ ‖π(a)‖2 ≤ ‖a‖2 for all a ∈ A.

Proof. Consider the mapping (·, ·) : A× A→ C defined by

(a, b) = τ(b∗a), a, b ∈ A.

It is easy to check that this is a positive semi-definite sesquilinear form.
Observe that if a ∈ A then a∗a ≤ ‖a‖21 by Lemma 4.4.9, so

(a, a) = τ(a∗a) ≤ ‖a‖2τ(1) = ‖a‖2.

44



Moreover, if a, b, c ∈ A then (ab, c) = τ(c∗ab) = τ((a∗c)∗b) = (b, a∗c).
By the Cauchy-Schwarz inequality 4.5.1, for each a ∈ A we have

(a, a) = 0 ⇐⇒ (a, b) = 0 for all b ∈ A.

Hence if N = {a ∈ A : (a, a) = 0} then

N = {a ∈ A : (a, b) = 0 for all b ∈ A}.
Using this expression, we can check that N is a left ideal of A. Indeed, if
a, b ∈ N then (a + b, c) = (a, c) + (b, c) = 0 and (λa, c) = λ(a, c) = 0 and
(ca, d) = (a, c∗d) = 0 for all c, d ∈ A and λ ∈ C, so a+ b, λa and ca are in N .

Consider the vector space V = A/N and let us write [a] = a+N ∈ V for
a ∈ A. We define a mapping 〈·, ·〉 : V × V → C by

〈[a], [b]〉 = (a, b), a, b ∈ A.

This is well-defined since if [a1] = [a2] and [b1] = [b2] then a2 − a1 ∈ N and
b2 − b1 ∈ N , so (a1, b1) = (a1, b1) + (a2 − a1, b1) + (a2, b2 − b1) = (a2, b2). It
follows that 〈·, ·〉 is a positive semi-definite sesquilinear form on V . In fact, it
is positive definite since if 〈[a], [a]〉 = 0 then (a, a) = 0 so a ∈ N , i.e. [a] = 0.
Hence (V, 〈·, ·〉) is an inner product space.

Let H be the completion of this inner product space. It is not hard to
show that 〈·, ·〉 extends to an inner product on H turning H into a Hilbert
space.

Let L(V ) denote the set of linear maps V → V , and let π0 : A → L(V )
be given by π0(a)[b] = [ab] for [b] ∈ V . This is well-defined since if [b1] = [b2]
then b2−b1 ∈ N , so if a ∈ A then a(b2−b1) = ab2−ab1 ∈ N (since N is a left
ideal) and so [ab1] = [ab2]. Moreover, for a, b ∈ A we have b∗a∗ab ≤ ‖a‖2b∗b
by Corollary 4.4.10, so

‖π0(a)[b]‖2 = ‖[ab]‖2 = (ab, ab) = τ(b∗a∗ab) ≤ ‖a‖2τ(b∗b) = ‖a‖2 ‖[b]‖2.

Hence ‖π0(a)[b]‖ ≤ ‖a‖ ‖[b]‖, so π0(a) is a continuous linear map by [FA 1.8.1],
and its operator norm satisfies ‖π0(a)‖ ≤ ‖a‖.

Thus π0(a) has a unique extension to a map in B(H), written π(a), and
‖π(a)‖ ≤ ‖a‖. This defines a mapping π : A→ B(H).

We claim that π is a ∗-homomorphism. Since V is dense in H and π(a)
is continuous for all a ∈ A, it suffices to check these properties on V . For
a, b, c ∈ A and λ ∈ C we have

π(a+ b)[c] = [(a+ b)c] = [ac+ bc] = π(a)[c] + π(b)[c] =
(
π(a) + π(b)

)
[c] and

π(λa)[c] = [λac] = λπ(a)[c] so π is linear,

π(ab)[c] = [abc] = π(a)[bc] = π(a)π(b)[c], so π is a homomorphism, and

〈π(a)[b], [c]〉 = (ab, c) = (b, a∗c) = 〈[b], π(a∗)[c]〉 so π(a∗) = π(a)∗.
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Hence π is a ∗-homomorphism.
It remains to establish the inequality τ(a∗a) ≤ ‖π(a)‖2 ≤ ‖a‖2. We have

already remarked that ‖π(a)‖ ≤ ‖a‖. Now ‖[1]‖2 = (1, 1) = τ(1) = 1, so
‖π(a)‖2 ≥ ‖π(a)[1]‖2 = ‖[a]‖2 = (a, a) = τ(a∗a).

We can now show that every C*-algebra is, up to isometric ∗-isomorphism,
a subalgebra of B(H) for some Hilbert space H. To do so, we will piece to-
gether all of the representations constructed in Lemma 4.5.9. Since there are
a lot of these representations, we will need to take care of a few technicalities
first.

Let I be an index set. If we are given αi ≥ 0 for each i ∈ I, then we will
say that (αi)i∈I is summable if the set of finite sums

{ ∑

i∈J

αi : J is a finite subset of I

}

is bounded above, and then we declare the value of
∑

i∈I αi to be supremum
of this set. If (αi)i∈I is summable, we write

∑
i∈I αi <∞.

Suppose that ti ∈ R and
∑

i∈I |ti| < ∞. Writing J = {j ∈ I : tj ≥ 0}
we can define

∑
i∈I ti =

∑
j∈J tj −

∑
k∈I\J(−tk). Similarly, if λi ∈ C and∑

i∈I |λi| <∞ then we can define
∑

i∈I λi =
∑

i∈I Re(λi) + i
∑

i∈I Im(λi).
If {Hi : i ∈ I} is a family of Hilbert spaces, then we can define an inner

product space H as follows:

H =

{
(ξi)i∈I : ξi ∈ Hi for each i ∈ I, and

∑

i∈I

‖ξi‖2 <∞
}

with “pointwise” vector space operations (ξi)i∈I + (ηi)i∈I = (ξi + ηi)i∈I ,
λ(ξi)i∈I = (λξi)i∈I and inner product

〈(ξi)i∈I , (ηi)i∈I〉 =
∑

i∈I

〈ξi, ηi〉.

It follows from the Cauchy-Schwarz inequality that
∑

i∈I |〈ξi, ηi〉| < ∞ if
(ξi)i∈I , (ηi)i∈I ∈ H, so the inner product is well-defined.

It is not too hard to show that H is then a complete inner product space,
i.e. H is a Hilbert space. We usually write

H =
⊕

i∈I

Hi

and call H the Hilbertian direct sum of the Hilbert spaces {Hi : i ∈ I}.
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Suppose that ai ∈ B(Hi) for each i ∈ I and that supi∈I ‖ai‖ < ∞. We
may define an operator a ∈ B(H) by a((ξi)i∈I) = (a(ξi))i∈I for (ξi)i∈I ∈ H.
Note that

∑
i∈I ‖aiξi‖2 ≤ (supi∈I ‖ai‖)

∑
i∈I ‖ξi‖2 for each x ∈ X, so a is a

bounded operator, with ‖a‖ ≤ supi∈I ‖ai‖. In fact, it is easy to show that
‖a‖ = supi∈I ‖ai‖ [exercise]. We will write a =

⊕
i∈I

ai.

4.5.10 Theorem (The Gelfand-Naimark-Segal theorem). If A is a unital
C*-algebra then A is isometrically ∗-isomorphic to a subalgebra of B(H) for
some Hilbert space H.

Proof. Given τ ∈ S(A), let us write Hτ and πτ : A → B(Hτ ) for the Hilbert
space and the ∗-homomorphism obtained from Lemma 4.5.9. Let

H =
⊕

τ∈S(A)

Hτ and define π(a) =
⊕

τ∈S(A)

πτ (a) for a ∈ A.

It is easy to see that this defines a ∗-homomorphism π : A→ B(H). If a ∈ A
then since ‖π(a)‖ = supτ∈S(A) ‖πτ (a)‖, we have

sup
τ∈S(A)

τ(a∗a) ≤ ‖π(a)‖2 ≤ ‖a‖2

by Lemma 4.5.9. However, a∗a is hermitian so by Lemma 4.5.8,

sup
τ∈S(A)

τ(a∗a) ≥ ‖a∗a‖ = ‖a‖2.

Putting these inequalities together shows that ‖π(a)‖ = ‖a‖ for each a ∈ A,
so π is an isometric ∗-homomorphism. In particular, the range of π is a closed
∗-subalgebra of B(H) which is ∗-isomorphic to A.
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