442 Sample Paper¹

11 March 2004

This is a sample paper intended to give an indication as to the style of the paper, howerver, I haven't made up new questions so they are all off the Problem Sheets, in the exam this won't be the case, in the exam roughly half the non-bookwork material will be original and half will have been in a problem sheet, perhaps with small differences.

- 1. (a) Define geodesic coordinates and writing the Riemann tensor in terms of these coordinates show $R_{abcd}=R_{cdab}$. [BOOK WORK]
 - (b) Find the scalar curvature on a two-dimensional hyperboloid:

$$x^2 + y^2 - t^2 = -r^2 (1)$$

embedded in the Minkowski space

$$ds^2 = -dt^2 + dx^2 + dy^2 (2)$$

2. Define a geodesic and prove that the geodesic gives the shortest path between two points. [BOOK WORK] Find the time-like geodesics for the metric

$$ds^2 = \frac{1}{t^2} \left(-dt^2 + dx^2 \right) \tag{3}$$

You might want to use the integral

$$\int \frac{dt}{t\sqrt{1+C^2t^2}} = \frac{1}{2}\log\left(\frac{\sqrt{1+C^2t^2}-1}{\sqrt{1+C^2t^2}+1}\right) \tag{4}$$

- 3. In Einstein's theory of gravity a test particle moves on a geodesic in a space-time whose curvature is determined by the Einstein equation. In Newton's theory of gravity a test particle has an acceleration according to Newton's law with the force determined by the Poisson equation. Show that in the non-relativistic weak-field approximation the Einsteinian gravity for a static space-time is approximated by Newtonian gravity. [BOOK WORK]
- 4. Let

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \tag{5}$$

where, by a choice of coordinates, $h_{\mu\nu}$ satisfies the harmonic gauge condition:

$$\partial_{\mu}h^{\mu}_{\nu} = \frac{1}{2}\partial_{\nu}h\tag{6}$$

show that the Einstein equations reduce to

$$-\frac{1}{2}\partial^{2}h_{\mu\nu} + \frac{1}{4}\eta_{\mu\nu}\partial^{2}h = 8\pi T_{\mu\nu}$$
 (7)

where, as usual, $h = h^{\mu}_{\mu}$ is the trace. By taking the trace of both sides and solving for $\partial^2 h$, show that this can be written as

$$\partial^2 h_{\mu\nu} = -16\pi \left(T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} T \right) \tag{8}$$

where $T = \eta^{\mu\nu}T_{\mu\nu}$.

5. Calculate the energy-momentum tensor

$$T_{\mu\nu} = F_{\rho\mu}F^{\rho}_{\ \nu} - \frac{1}{4}g_{\mu\nu}F_{\lambda\rho}F^{\lambda\rho}$$

for the Maxwell field:

$$S = -\frac{1}{4} \int F^{\mu\nu} F_{\mu\nu} \sqrt{g} d^4x$$

where

$$F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$$

where you may quote the variation $\delta g = gh/2$ for $\delta g_{\mu\nu} = h_{\mu\nu}$ and $h = \eta^{\mu\nu}h_{\mu\nu}$. Verify that this expression satisfies the identity $\nabla^{\mu}T_{\mu\nu} = 0$.

6. Show that a universe with $\Omega_0 = 1 - \epsilon$ for small positive ϵ has age

$$t_0 = \frac{2}{3H_0} \left(1 + \frac{1}{5}\epsilon \right) + O(\epsilon^2).$$

You might find the expansion

$$\sinh^{-1} x = x - \frac{1}{6}x^3 + \frac{3}{40}x^5$$

useful, you might also benefit from being reminded that the usual way of integrating

$$\int \frac{dx}{\sqrt{\frac{A}{x} + 1}}$$

is to substitute $x = A \sinh^2 \theta$ and then use

$$\int d\theta \sinh^2 \theta = \frac{1}{2} \sinh \theta \cosh \theta - \frac{1}{2} \theta$$

[BOOK WORK]

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/442.html

7. The equation of state is often written in adiabatic form

$$p = (\gamma - 1)\rho$$

where p is pressure and ρ is density and $0 \le \gamma \le 2$ is the adiabatic index with $\gamma = 1$ for dust and $\gamma = 4/3$ for radiation.

- (a) Calculate $\rho(a)$ for general γ . Find the age of the universe for k=0.
- (b) Find γ so that the expansion rate is constant. With this value of γ find a(t) for k=1 and k=-1.
- (c) In the same notation, show

$$\dot{\Omega} = (2 - 3\gamma)H\Omega(1 - \Omega)$$

Define the logarithmic scale factor $s = \log a$ and write an equation for $d\Omega/ds$.

- (d) Comment on the flatness problem.
- 8. Consider a simplified model of the history of a flat universe involving a period of inflation. The history is split into four periods: (a) 0 < t < t₃ radiation only; (b) t₃ < t < t₂ vacuum energy dominates with an effective cosmological constant Λ = 3t₃²/4; (c) t₂ < t < t₁ a period of radiation domination; (d) t₁ < t < t₀ matter domination.
 - (a) Show that in (c) $\rho(t) = \rho_r(t) = 3\pi t^2/32$ and in (d) $\rho(t) = \rho_m(t) = \pi t^2/6$. The functions ρ_r and ρ_m are introduced for later convenience.
 - (b) Give simple analytic formulas for a(t) which are approximately true in these four epochs.
 - (c) Shat that during the inflationary epoch the universe expands by a factor

$$\frac{a(t_2)}{a(t_3)} = \exp\left(\frac{t_2 - t_3}{2t_3}\right) \tag{9}$$

(d) In the notation introduced earlier, show

$$\frac{\rho_r(t_0)}{\rho_m(t_0)} = \frac{9}{16} \left(\frac{t_1}{t_0}\right)^{2/3} \tag{10}$$

- (e) If $t_3=10^{-35}$ seconds, $t_2=10^{-32}$ seconds, $t_1=10^4$ years and $t_0=10^{10}$ years, give a sketch of $\log a$ against $\log t$ marking any important epochs.
- 9. Kaluza-Klein question, will be added later.