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2 Integral Domains

2.1 Factorization in Integral Domains

An integral domain is a unital commutative ring in which the product of any
two non-zero elements is itself a non-zero element.

Lemma 2.1 Let x, y and z be elements of an integral domain R. Suppose
that x 6= 0R and xy = xz. Then y = z.

Proof Suppose that these elements x, y and z satisfy xy = xz. Then x(y −
z) = 0R. Now the definition of an integral domain ensures that if a product
of elements of an integral domain is zero, then at least one of the factors
must be zero. Thus if x 6= 0R and x(y − z) = 0R then y − z = 0R. But then
x = y, as required.

Definition An element u of an integral domain R is said to be a unit if
there exists some element u−1 of R such that uu−1 = 1.

If u and v are units in an integral domain R then so are u−1 and uv.
Indeed (uv)(v−1u−1) = 1, and thus (uv)−1 = v−1u−1. The set of units of R
is thus a group with respect to the operation of multiplication.

Example The units of the ring Z of integers are 1 and −1.

Example Let K be a field. Then the units of the polynomial ring K[x] are
the non-zero constant polynomials.

Definition Elements x and y of an integral domain R are said to be asso-
ciates if y = xu (and x = yu−1) for some unit u.

Definition A principal ideal of an integral domain R is an ideal (x) gener-
ated by a single element x of R.

Let x and y be elements of an integral domain R. We write x | y if and
only if x divides y (i.e., y = rx for some r ∈ R). Now x | y if and only if
y ∈ (x), where (x) is the principal ideal of R generated by x. Thus x | y if
and only if (y) ⊂ (x). Moreover an element u of R is a unit of R if and only
if (u) = R.

Example Non zero integers x and y are associates in the ring Z of integers
if and only if |x| = |y|.
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Example Let K be a field. Then non-zero polynomials p(x) and q(x) with
coefficients in the field K are associates in the polynomial ring K[x] if and
only if one polynomial is a constant multiple of the other.

Lemma 2.2 Elements x and y of an integral domain R are associates if and
only if x|y and y|x.

Proof If x and y are associates then clearly each divides the other. Con-
versely suppose that x|y and y|x. If x = 0R or y = 0R there is nothing to
prove. If x and y are non-zero then y = xu and x = yv for some u, v ∈ R. It
follows that x = xuv and thus x(uv−1) = 0R. But then uv = 1, since x 6= 0R
and the product of any two non-zero elements of an integral domain is itself
non-zero. Thus u and v are units of R, and hence x and y are associates, as
required.

Lemma 2.3 Elements x and y of an integral domain R are associates if and
only if (x) = (y).

Proof This follows directly from Lemma 2.2.

Definition An element x of an integral domain R is irreducible if x is not
a unit of R and, given any factorization of x of the form x = yz, one of the
factors y and z is a unit of R and the other is an associate of x.

Note that if x is an irreducible element of an integral domain R and if u
is a unit of R then ux is also an irreducible element of R. Indeed suppose
that ux = yz where y and z are elements of R. There exists some element v
of R such that uv = 1R. Then Then x = (vy)z. Because x is irreducible, one
or other of the elements vy and z must be a unit of R. It follows that one
of the elements y and z must be a unit of R, and the other must therefore
be an associate of ux. Thus ux is an irreducible element of R. We conclude
that any associate of an irreducible element of an integral domain must itself
be an irreducible element of that integral domain.

Example An integer n is an irreducible element of the ring Z of integers if
and only if |n| is a prime number.

Definition An element p of an integral domain R is said to be prime if p is
neither zero nor a unit and, given any two elements r and s of R such that
p | rs, either p | r or p | s.

Lemma 2.4 Any prime element of an integral domain is irreducible.
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Proof Let x be a prime element of an integral domain R. Then x is neither
zero nor a unit of R. Suppose that x = yz for some y, z ∈ R. Then either x|y
or x|z. If x|y, then it follows from Lemma 2.2 that x and y are associates,
in which case z is a unit of R. If x|z then x and z are associates and y is a
unit of R. Thus x is irreducible.

Proposition 2.5 Let R be an integral domain. Suppose that every ideal of
R is finitely generated. Then any non-zero element of R that is not a unit of
R can be factored as a finite product of irreducible elements of R.

Proof Let R be an integral domain, and let S be the subset of R consisting
of zero, all units of R, and all finite products of irreducible elements of R.
Then xy ∈ S for all x ∈ S and y ∈ S. We shall prove that if R \ S is
non-empty, then R contains an ideal that is not finitely generated.

Let x be an element of R \ S. Then x is non-zero and is neither a unit
nor an irreducible element of R, and therefore there exist elements y and z
of R, such that x = yz and neither y nor z is a unit of R. Then neither y
not z is an associate of x. Moreover either y ∈ R \ S or z ∈ R \ S, since the
product of any two elements of S belongs to S. Thus we may construct, by
induction on n, an infinite sequence x1, x2, x3, . . . of elements of R \ S such
that x1 = x, xn+1 divides xn but is not an associate of xn for all n ∈ N .
Thus if m and n are natural numbers satisfying m < n, then xn divides xm
but xm does not divide xn.

Let I = {r ∈ R : xn|r for some n ∈ N}. Then I is an ideal of R. We
claim that this ideal is not finitely generated.

Let g1, g2, . . . , gk be a finite list of elements of I. Now there exists some
natural number m large enough to ensure that that xm|gj for j = 1, 2, . . . , k.
If I were generated by these elements g1, g2, . . . , gk, then xm|r for all r ∈ I.
In particular xm would divide all xn for all n ∈ N, which is impossible. Thus
the ideal I cannot be finitely generated.

We have shown that if the set S defined above is a proper subset of some
integral domain R, then R contains some ideal that is not finitely generated.
The result follows.

2.2 Euclidean Domains

Definition Let R be an integral domain, and let R∗ denote the set R\{0R}
of non-zero elements of R. An integer-valued function ϕ:R∗ → Z defined on
R∗ is said to be a Euclidean function if it satisfies the following properties:—

(i) ϕ(r) ≥ 0 for all r ∈ R∗;
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(ii) if x, y ∈ R∗ satisfy x|y then ϕ(x) ≤ ϕ(y);

(iii) given x, y ∈ R∗, there exist q, r ∈ R such that x = qy+ r, where either
r = 0R or ϕ(r) < ϕ(y).

Definition A Euclidean domain is an integral domain on which is defined
a Euclidean function.

Example Let Z∗ denote the set of non-zero integers, and let ϕ:Z∗ → Z be
the function defined such that ϕ(x) = |x| for all non-zero integers x. Then
ϕ is a Euclidean function. It follows that Z is a Euclidean domain.

Example Let K be a field, and let K[x] be the ring of polynomials in a
single indeterminate x with coefficients in the field K. The degree deg p of
each non-zero polynomial p is a non-negative integer. If p and q are non-zero
polynomials in K[x], and if p divides q, then deg p ≤ deg q. Also, given any
non-zero polynomials m and p in K[x] there exist polynomials q, r ∈ K[x]
such that p = qm+ r and either r = 0K or else deg r < degm. We conclude
from this that the function that maps each non-zero polynomial in K[x] to
its degree is a Euclidean function for K[x]. Thus K[x] is a Euclidean domain.

Example A Gaussian integer is a complex number of the form x + y
√
−1,

where x and y are integers. The set of all Gaussian integers is a subring of the
field of complex numbers, and is an integral domain. We denote the ring of
Gaussian integers by Z[

√
−1]. We define ϕ(z) = |z|2 for all non-zero Gaussian

integers z. Then ϕ(z) is an non-negative integer for all non-zero Gaussian
integers z, for if z = x + y

√
−1, where x, y ∈ Z, then ϕ(z) = x2 + y2. If z

and w are non-zero Gaussian integers, and if z divides w in the ring Z[
√
−1],

then there exists a non-zero Gaussian integer t such that w = tz. But then
ϕ(w) = ϕ(t)ϕ(z), where ϕ(t) ≥ 1, and therefore ϕ(z) ≤ ϕ(w).

Let z and w be non-zero Gaussian integers. Then the ratio z/w lies in
some square in the complex plane, where the sides of the square are of unit
length, and the corners of the square are given by Gaussian integers. There
is at least one corner of the square whose distance from z/w does not exceed
1/
√

2. Thus there exists some Gaussian integer q such that∣∣∣ z
w
− q
∣∣∣ ≤ 1√

2
.

Let r = z − qw. Then either r = 0, or else

ϕ(r) = |r|2 =
∣∣∣ z
w
− q
∣∣∣2 |w|2 =

∣∣∣ z
w
− q
∣∣∣2 ϕ(w) ≤ 1

2
ϕ(w) < ϕ(w).
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Thus the function that maps each non-zero Gaussian integer z to the positive
integer |z|2 is a Euclidean function for the ring of Gaussian integers. The
ring Z[

√
−1] of Gaussian integers is thus a Euclidean domain.

Each unit of the ring of Gaussian integers divides every other non-zero
Gaussian integer. Thus if u is a unit of this ring then ϕ(u) ≤ ϕ(z) for all non-
zero Gaussian integers z. It follows that ϕ(u) = 1. Now the only Gaussian
integers satisfying this condition are 1, −1, i and −i (where i =

√
−1).

Moreover each of these Gaussian integers is a unit. We conclude from this
that the units of the ring of Gaussian integers are 1, −1, i and −i.

Proposition 2.6 Every ideal of a Euclidean domain is a principal ideal.

Proof Let R be a Euclidean domain, let R∗ be the set of non-zero elements
of R, and let ϕ:R∗ → Z be a Euclidean function. Now the zero ideal of R is
generated by the zero element of R. It remains therefore to show that every
non-zero ideal of R is a principal ideal.

Let I be a non-zero ideal of R. Now

{ϕ(x) : x ∈ I and x 6= 0R}

is a set of non-negative integers, and therefore has a least element. It follows
that there exists some non-zero elementm of I with the property that ϕ(m) ≤
ϕ(x) for all non-zero elements x of I. It then follows from the definition of
Euclidean functions that, given any non-zero element x of the ideal I, there
exist elements q and r of R such that x = qm + r and either r = 0R or
ϕ(r) < ϕ(m). But then r ∈ I, since r = x − qm and x,m ∈ I. But there
are no non-zero elements r of I satisfying ϕ(r) < ϕ(m). It follows therefore
that r = 0R. But then x = qm, and thus x ∈ (m). We have thus shown that
I = (m). Thus every non-zero ideal of R is a principal ideal, as required.

2.3 Principal Ideal Domains

Definition An integral domain R is said to be a principal ideal domain if
every ideal of R is a principal ideal.

It follows directly from Proposition 2.6 that every Euclidean domain is a
principal ideal domain.

In particular the ring Z of integers is a principal ideal domain, the ring
K[x] of polynomials with coefficients in some field K is a principal ideal
domain, and the ring Z[

√
−1] of Gaussian integers is a principal ideal domain.

Let x1, x2, . . . , xk be elements of a unital commutative ring R. Then the
ideal (x1, x2, . . . , xk) generated by x1, x2, . . . , xk is the smallest ideal of R
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that contains the set {x1, x2, . . . , xk}, and consists of all elements of R that
can be represented in the form a1x1 + a2x2 + · · · + akxk for some elements
a1, a2, . . . , ak of R.

Lemma 2.7 Let x1, x2, . . . , xk be elements of a principal ideal domain R,
where these elements are not all zero. Suppose that the units of R are the
only non-zero elements of R that divide each of x1, x2, . . . , xk. Then there
exist elements a1, a2, . . . , ak of R such that a1x1 + a2x2 + · · ·+ akxk = 1.

Proof Let I be the ideal of R generated by x1, x2, . . . , xk. Then I = (d)
for some d ∈ R, since R is a principal ideal domain. Then d divides xi for
i = 1, 2, . . . , k, and therefore d is a unit of R. It follows that I = R. But then
1 ∈ I, and therefore 1 = a1x1 + a2x2 + · · ·+ akxk for some a1, a2, . . . , ak ∈ R,
as required.

Lemma 2.8 Let p be an irreducible element of a principal ideal domain R.
Then the quotient ring R/(p) is a field.

Proof Let x be an element of R that does not belong to (p). Then p does
not divide x, and therefore any common divisor of x and p must be a unit
of R. Therefore there exist elements y and z of R such that xy + pz = 1
(Lemma 2.7). But then y + (p) is a multiplicative inverse of x + (p) in the
quotient ring R/(p), and therefore the set of non-zero elements of R/(p) is
an Abelian group with respect to multiplication. Thus R/(p) is a field, as
required.

Theorem 2.9 An element of a principal ideal domain is prime if and only
if it is irreducible.

Proof We have already shown that any prime element of an integral domain
is irreducible (Lemma 2.4). Let p be an irreducible element of a principal
ideal domain R. Then p is neither zero nor a unit of R. Suppose that p | yz
for some y, z ∈ R. Now any divisor of p is either an associate of p or a unit
of R. Thus if p does not divide y then any element of R that divides both p
and y must be a unit of R. Therefore there exist elements a and b of R such
that ap+ by = 1 (Lemma 2.7). But then z = apz + byz, and hence p divides
z. Thus p is prime, as required.

2.4 Fermat’s Two Squares Theorem

We shall use the fact that the ring of Gaussian integers is a principal ideal
domain to prove a theorem, originally claimed by Fermat, that states that
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an odd prime number p can be represented in the form p = x2 + y2 for some
integers x and y if and only if p ≡ 1 (mod 4). We make use of the following
theorem, claimed and used by Ibn al-Haytham some time around the year
1000, and subsequently stated by Leibniz and by John Wilson, and proved
by Lagrange in 1771.

Theorem 2.10 (Wilson’s Theorem) (p−1)!+1 is divisible by p for all prime
numbers p.

Proof Let p be a prime number. If x is an integer satisfying x2 ≡ 1 (mod p)
then p divides (x− 1)(x+ 1) and hence either p divides either x− 1 or x+ 1.
Thus if 1 ≤ x ≤ p− 1 and x2 ≡ 1 (mod p) then either x = 1 or x = p− 1.

For each integer x satisfying 2 ≤ x ≤ p − 2, there exists exactly one
integer y satisfying 2 ≤ y ≤ p − 2 such that xy ≡ 1 (mod p), and moreover
y 6= x. It follows that (p−2)! is a product of numbers of the form xy, where x
and y are distinct integers between 2 and p− 2 that satisfy xy ≡ 1 (mod p).
It follows that (p− 2)! ≡ 1 (mod p). But then (p− 1)! ≡ p− 1 (mod p), and
hence (p− 1)! + 1 is divisible by p, as required.

Corollary 2.11 Let p be an odd prime number, and let m = 1
2
(p− 1). Then

(m!)2 + (−1)m is divisible by p.

Proof The factorial (p − 1)! is the product of the integers k(p − k) for
k = 1, 2, . . . ,m. Moreover k(p − k) ≡ −k2 (mod p) for k = 1, 2, . . . ,m.
Therefore

(p− 1)! =
m∏
k=1

k(p− k) ≡
m∏
k=1

(−k2) = (−1)m(m!)2 (mod p).

Thus
(m!)2 + (−1)m ≡ (−1)m((p− 1)! + 1) (mod p).

It follows from Wilson’s Theorem (Theorem 2.10) that (m!)2 + (−1)m is
divisible by p, as required.

We now prove Fermat’s Two Squares Theorem using a method based
on properties of the ring Z[

√
−1] of Gaussian integers published by Richard

Dedekind in 1894.

Theorem 2.12 (Fermat’s Two Squares Theorem) Let p be an odd prime
number. Then there exist integers x and y such that p = x2 + y2 if and only
if p ≡ 1 (mod 4).
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Proof If x is an even integer then x2 ≡ 0 (mod 4). If x is an odd integer
then x2 ≡ 1 (mod 4). It follows that if x and y are integers, and if x2 + y2

is an odd integer then x2 + y2 ≡ 1 (mod 4). (It is not possible to represent
an integer congruent to 3 modulo 4 as a sum of two squares.) Thus only
odd primes p satisfying p ≡ 1 (mod 4) can be represented as the sum of two
squares.

Now let p be an odd prime satisfying p ≡ 1 (mod 4), and let m = 1
2
(p−1).

Then m is an even integer. It follows from Corollary 2.11 that p divides
(m!)2 + 1.

We now consider the nature of the prime number p, considered as an
element of the ring Z[

√
−1] of Gaussian integers, where

Z[
√
−1] = {x+ y

√
−1 : x, y ∈ Z}.

Now (m!)2 + 1 factorizes as the product

(m!)2 + 1 = (m! +
√
−1)(m!−

√
−1)

of Gaussian integers m! +
√
−1 and m! −

√
−1. But neither m! +

√
−1 nor

m!−
√
−1 is divisible by the prime number p in the ring Z[

√
−1] of Gaussian

integers, despite the fact that p divides the product of these two Gaussian
integers. It follows that if the prime number p satisfies p ≡ 1 (mod 4) then
p is not a prime element of the ring Z[

√
−1]. But Z[

√
−1] is a Euclidean

domain, and is thus a principal ideal domain (Proposition 2.6), and therefore
every irreducible element of Z[

√
−1] is prime (Theorem 2.9). Because p is not

a prime element of Z[
√
−1], it cannot be an irreducible element of Z[

√
−1],

and therefore there must exist Gaussian integers ω, θ ∈ Z[
√
−1] such that

p = ωθ, where neither ω nor θ is a unit of Z[
√
−1]. Now the norm x2 + y2 of

any non-zero Gaussian integer x + y
√
−1 is a positive integer, and has the

value one if and only if x+y
√
−1 is a unit of Z[

√
−1]. It follows that |ω|2 and

|θ|2 are positive integers satisfying |ω|2 > 1 and |θ|2 > 1. But |ω|2|θ|2 = p2,
and the only factors of p2 are 1, p and p2. It follows that |ω|2 = |θ|2 = p. Let
ω = x+ y

√
−1. Then p = |ω|2 = x2 + y2. Thus a prime number p satisfying

p ≡ 1 (mod 4) can be represented in the form p = x2 + y2 for some integers
x and y, as required.

Remark The above proof of Fermat’s Two Squares theorem uses the fact
that if p is a prime number satisfying p ≡ 1 (mod 4) then there exists an
integer w satisfying the congruence w2 ≡ −1 (mod p). The existence of
such an integer shows that the number −1 is a quadratic residue of p when
p ≡ 1 (mod 4), and can be proved in various ways. One of these ways
involves the use of Wilson’s Theorem, as explained above, to show that if
p ≡ 1 (mod 4) then −1 ≡ (m!)2 (mod p), where m = (p− 1)/2.
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An integer z is said to be a quadratic residue of a prime number p if
there exists some integer w such that z ≡ w2 (mod p). Now the non-zero
elements of any field constitute a group under multiplication, and every finite
subgroup of the group of non-zero elements of a field is cyclic.

This result can be applied to the field of congruence classes of integers
modulo p to deduce that, given any prime number p, there exists some in-
teger g whose congruence class generates the group of non-zero elements of
this field. Then, given any integer z coprime to p, there exists some integer k
such that z ≡ gk (mod p). Such an integer g is said to be a primitive root of
p.

In the case where p 6= 2 the group of congruence classes modulo p of
integers coprime to p is of even order and it follows from this that an integer z
is a quadratic residue of p if and only if z ≡ gk (mod p) for some even
integer k, where g is some primitive root of p, and this is the case if and only
if z(p−1)/2 ≡ 1 (mod p). In particular, −1 is a quadratic residue of p if and
only if (−1)(p−1)/2 ≡ 1 (mod p). It follows that −1 is a quadratic residue of
an odd prime p if and only if p ≡ 1 (mod 4).

2.5 Maximal Ideals and Prime Ideals

Definition Let R be a unital commutative ring. An ideal M of R is said
to be maximal if it is a proper ideal of R and if the only ideals I satisfying
M ⊂ I ⊂ R are the maximal ideal M and the ring R itself.

Lemma 2.13 An ideal M of a unital commutative ring R is a maximal ideal
of R if and only if the quotient ring R/M is a field.

Proof The preimage ν−1(J) of any ideal of R/M under the quotient homo-
morphism ν:R → R/M is an ideal of R satisfying M ⊂ ν−1(J) ⊂ R. Also
each ideal I of R satisfying M ⊂ I ⊂ R determines an ideal I/M of R/M
satisfying ν−1(I/M) = I, and moreover an ideal J of R/M satisfies J = I/M
if and only if ν−1(J) = I. Thus the ideals I of R that satisfy M ⊂ I ⊂ R
are in one-to-one correspondence with the ideals of the quotient ring R/M .
It follows that an ideal M of R is maximal if and only if the only ideals of
the quotient ring R/M are the zero ideal and the whole of the quotient ring.
The quotient R/M of a unital commutative ring R by a proper ideal M is
a commutative ring with a non-zero multiplicative identity element M + 1R.
But a unital commutative ring is a field if and only if the only ideals of that
ring are the zero ideal and the ring itself. (Lemma 1.4). It follows that an
ideal M of a unital commutative ring R is a maximal ideal of R if and only
if the corresponding quotient ring R/M is a field.
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Definition Let R be a unital commutative ring. An ideal P of R is said
to be prime if P is a proper ideal of R and, for all elements x and y of R
satisfying xy ∈ P , either x ∈ P or y ∈ P .

Lemma 2.14 An ideal P of a unital commutative ring R is a prime ideal
of R if and only if the quotient ring R/P is an integral domain.

Proof Let P be an ideal of R. Then P is prime if and only if P is a proper
ideal of R and, given elements x and y that do not belong to the ideal P ,
the product xy of those elements does not belong to P . Now an element
x of R belongs to an ideal P if and only if the image x + P of x under
the quotient homomorphism is the zero element of R/P . It follows that the
ideal P of R is prime if and only if R/P is a commutative ring with a non-
zero multiplicative identity element P + 1R in which the product of any two
non-zero elements of the quotient ring R/P is always a non-zero element of
that quotient ring. It then follows from the definition of integral domains
that an ideal P of a unital commutative ring R is prime if and only if R/P
is an integral domain.

Lemma 2.15 Every maximal ideal of a unital commutative ring R is a prime
ideal of R.

Proof Every field is an integral domain. The result therefore follows imme-
diately from Lemma 2.13 and Lemma 2.14.

Lemma 2.16 The zero ideal {0R} of a unital commutative ring R is a prime
ideal of R if and only if R is an integral domain.

Proof The zero ideal of a unital commutative ring R is a proper ideal of R.
It is therefore prime if and only if the product of non-zero elements of R is
always non-zero, and thus is prime if and only if R is an integral domain.

Lemma 2.17 An integral domain with only finitely many elements is a field.

Proof Let R be an integral domain with only finitely many elements, and
let x be a non-zero element of R. Then x determines an injective function
λx:R → R from R to itself, where λx(y) = xy for all y ∈ R. This injective
function must be surjective, because R is a finite set. Therefore there exists
some element y of R such that λx(y) = 1R, where 1R is the multiplicative
identity element of R. Then xy = 1R. This proves that every non-zero
element of the integral domain R is a unit of R, and therefore R is a field.
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Lemma 2.18 Let R be a unital commutative ring, and let P be a prime ideal
of R. Suppose that the number of cosets of P in R is finite. Then P is a
maximal ideal of R.

Proof The quotient ring R/P is an integral domain, because the ideal P is
prime (Lemma 2.14). This integral domain has only finitely many elements
because those elements are the cosets of P in R. Therefore R/P is a field
(Lemma 2.17), and thus the prime ideal P is a maximal ideal (Lemma 2.13).

Lemma 2.19 Let x be an element of an integral domain R. Then x is a
prime element of R if and only if the principal ideal (x) generated by x is a
non-zero prime ideal of R.

Proof Let x be a prime element of R. Then x is non-zero and is not a unit
of R. It follows that (x) is a non-zero proper ideal of R. Let y and z be
elements of R satisfying yz ∈ (x). Then x|yz. Therefore either x|y or x|z,
because x is a prime element of R, and thus either y ∈ (x) or z ∈ (x). Thus
the principal ideal (x) is a non-zero prime ideal of R.

Conversely let x be an element of R for which the corresponding principal
ideal (x) is a non-zero prime ideal of R. Then x 6= 0R. Also (x) is a proper
ideal of R, because the definition of prime ideals requires such ideals to be
proper ideals of R, and therefore x is not a unit of R. Let y and z be elements
of R. Then yz ∈ (x) if and only if either y ∈ (x) or z ∈ (x). It follows that
x|yz if and only if either x|y or x|z. Therefore x is a prime element of R.

Definition Let I1, I2, . . . , Ik be ideals of a unital commutative ring R. The
product I1I2 · · · Ik of the ideals I1, I2, . . . , Ik is the ideal of R generated by all
products of the form x1x2 · · ·xk where xi ∈ Ii for i = 1, 2, . . . , k.

It follows from the definition of the product of ideals that any element
of the product IJ of ideals I and J of a unital commutative ring R can be
represented as a sum of the form

y1z1 + y2z2 + · · ·+ ymzm,

where yj ∈ I and zj ∈ J for j = 1, 2, . . . ,m. Indeed all elements of R
representable in this form must belong to the ideal generated by the set

{yz : y ∈ J and z ∈ K}.

But the set of elements of R representable as a sum of the above form is itself
an ideal of R and is thus the ideal generated by the set of all products yz
with y ∈ I and z ∈ J .
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More generally, given ideals I1, I2, . . . , Ik of a unital commutative ring R,
the product I1I2 · · · Ik of those ideals consists of those elements of R that can
be represented as sums of products belonging to the set

{x1x2 · · ·xk : xi ∈ Ii for i = 1, 2, . . . , k}.

Lemma 2.20 A proper ideal P of a unital commutative ring R is prime if
and only if, given any ideals I and J of R satisfying IJ ⊂ P , either I ⊂ P
or J ⊂ P .

Proof Let P be a prime ideal of R. If I 6⊂ P and J 6⊂ P then there exist
elements y ∈ I and z ∈ J such that y 6∈ P and z 6∈ P . Then yz 6∈ P , because
the ideal P is prime. But yz ∈ IJ . It follows that IJ 6⊂ P .

Thus if P is a prime ideal of a unital commutative ring R, and if I and
J are ideals of R satisfying IJ ⊂ P , then either I ⊂ P or J ⊂ P .

Conversely, suppose that P is a proper ideal of R, and that, for all ideals
I and J of R satisfying IJ ⊂ P , either I ⊂ P or J ⊂ P . Let x and y
be elements of R satisfying xy ∈ P . Then (x)(y) = (xy), and therefore
(x)(y) ⊂ P . It follows that either (x) ⊂ P , in which case x ∈ P , or else
(y) ⊂ P , in which case y ∈ P . This proves that the ideal P is prime. The
result follows.

2.6 Unique Factorization Domains

The Fundamental Theorem of Arithmetic states that every integer greater
than one can be factored uniquely as a product of one or more prime numbers.
We now introduce a class of integral domains that possess a unique factor-
ization property that generalizes in an appropriate fashion the Fundamental
Theorem of Arithmetic.

The following proposition guarantees that any factorization of an element
of a principal ideal domain as the product of one or more prime elements of
that domain is unique up to the order of the factors and the replacement of
any factor by an associate of that factor.

Proposition 2.21 Let R be an integral domain, and let x be a non-zero
element of R that is not a unit of R. Suppose that

x = p1p2 · · · pk = q1q2, · · · , ql,

where p1, p2, . . . , pk are prime elements of R and q1, q2, . . . , ql are irreducible
elements of R. Then l = k, and there exists some permutation σ of the set
{1, 2, . . . , k} such that qi and pσ(i) are associates for i = 1, 2, . . . , k.
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Proof The result holds when k = 1, because every prime element of R is
irreducible, and therefore cannot be factored as a product of two or more
irreducible elements.

Let k be an integer greater than 1, and suppose that the stated result
holds for all non-zero elements of R that are not units of R and that can be
factored as a product of fewer than k prime elements of R. We shall prove
that the result then holds for any non-zero element x of R that is not a unit
of R and that can be factored as a product p1p2 · · · pk of k prime elements
p1, p2, . . . , pk of R. The required result will then follow by induction on k.

So, suppose that x is an non-zero element of R that is not a unit of R,
and that

x = p1p2 · · · pk = q1q2, · · · , ql,
where p1, p2, . . . , pk are prime elements of R and q1, q2, . . . , ql are irreducible
elements of R. Now p1 divides the product q1q2, · · · , ql, and therefore p1
divides at least one of the factors qi of this product. We may reorder and
relabel the irreducible elements q1, q2, . . . ql to ensure that p1 divides q1. The
irreducibility of q1 then ensures that p1 is an associate of q1, and therefore
there exists some unit u in R such that q1 = p1u. But then p1(p2p3 · · · pk) =
p1(uq2q3 · · · ql) and p1 6= 0R, and therefore p2p3 · · · pk = (uq2)q3 · · · ql. (see
Lemma 2.1). Moreover uq2 is an irreducible element of R that is an as-
sociate of q2. Now it follows from the induction hypothesis that the de-
sired result holds for the product p2p3 · · · pk. Therefore l = k and moreover
q2, q3, . . . , qk can be reordered and relabeled so that pi and qi are associates
for i = 2, 3, . . . , k. The stated result therefore follows by induction on the
number of prime factors occuring in the product p1p2 · · · pk.

Definition An integral domain R is said to be a unique factorization domain
if every non-zero element of R that is not a unit of R can be factored as the
product of one or more prime elements of R.

Lemma 2.22 An integral domain R is a unique factorization domain if and
only if it has the following two properties:

(i) any non-zero element of R that is not a unit of R can be factored as
the product of one or more irreducible elements of R;

(ii) every irreducible element of R is a prime element of R.

Proof It follows directly from the definition of unique factorization domains
given above that every integral domain with these two properties is a unique
factorization domain. Also every prime element of an integral domain is
irreducible (Lemma 2.4), and therefore every unique factorization domain
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satisfies the first of these two properties. Moreover an irreducible element
of a unique factorization domain R must factor as a product of one or more
prime elements of R. But, being irreducible, it can only have one prime
factor, and therefore it must itself be prime. Thus every unique factorization
domain satisfies property (ii).

Lemma 2.23 Every principal ideal domain is a unique factorization do-
main.

Proof Every ideal of a principal ideal domain can be generated by a single
element of the domain, and is thus finitely generated. A direct application of
Proposition 2.5 therefore shows that any non-zero element of a principal ideal
domain that is not a unit can be factored as a finite product of irreducible
elements of the domain. Moreover Theorem 2.9 guarantees that every irre-
ducible element of a principal ideal domain is prime. The result therefore
follows from Lemma 2.22.

2.7 Prime Ideals of Principal Ideal Domains

Lemma 2.24 Let R be a principal ideal domain. Then every non-zero prime
ideal of R is a maximal ideal of R. Moreover every non-zero prime ideal of
R is a principal ideal generated by some prime element of R.

Proof Let P be a non-zero prime ideal of R. Then there exists some non-
zero element x of R such that P = (x). The ideal (x) is a non-zero proper
ideal of R. It follows from Lemma 2.19 that x is a prime element of R. Then
x is an irreducible element of R, because all prime elements of a principal
ideal domain are irreducible. Let I be an ideal of R satisfying (x) ⊂ I ⊂ R.
Then I = (y) for some element y of R. But then (x) ⊂ (y), and therefore
y|x. It follows from the irreducibility of x that either y is a unit, in which
case I = R, or y is an associate of x, in which case I = (x). Therefore the
ideal (x) is a maximal ideal of R, as required.

Remark Let R be a principal ideal domain, and let x be a prime element
of R. The ideal (x) generated by x is then a non-zero prime ideal of R. It
follows from Lemma 2.24 that the ideal (x) generated by x is a maximal
ideal of R. It then follows from Lemma 2.13 that the quotient ring R/(x)
is a field. These results therefore combine to provide an alternative proof of
Lemma 2.8.
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Lemma 2.25 Let R be a principal ideal domain. Then every non-zero proper
ideal I of R factors as a product

I = P1P2 · · ·Pk

where P1, P2, . . . , Pk are non-zero prime ideals of R. Moreover this factor-
ization of I as a product of prime ideals is unique: if

P1P2 · · ·Pk = Q1Q2 · · ·Ql,

where P1, P2, . . . , Pk and Q1, Q2, . . . , Ql are prime ideals of R, then k = l, and
there exists some permutation σ of the set {1, 2, . . . , k} such that Qi = Pσ(i)
for i = 1, 2, . . . , k.

Proof Let I be a non-zero proper ideal of R. Then there exists some non-
zero element x of R such that I = (x). Moreover x is not a unit of R. The
principal ideal domain R is a unique factorization domain (Lemma 2.23).
Therefore there exist prime elements p1, p2, . . . , pk such that x = p1p2 · · · pk.
Let Pi = (pi) for i = 1, 2, . . . , k. Then each ideal Pi is a non-zero prime ideal
of R, and I = P1P2 · · ·Pk.

Two prime elements of R generate the same prime ideal of R if and only
if they are associates. The uniqueness of the factorization of I as a product
of prime ideals therefore follows directly from Proposition 2.21.

2.8 An Integral Domain lacking Unique Factorization

The integral domain Z[
√
−5] consists of all all complex numbers that are

of the form x + y
√
−5 for some integers x and y. We define the norm

N(x+ y
√
−5) of an element x+ y

√
−5 of Z[

√
−5] to be x2 + 5y2. The norm

N(ω) of an element ω of Z[
√
−5] is thus a non-negative integer. Moreover

N((x+ y
√
−5)(u+ v

√
−5)) = N(xu− 5yv + (xv + yu)

√
−5)

= (xu− 5yv)2 + 5(xv + yu)2

= x2u2 + 25y2v2 + 5x2v2 + 5y2u2

= (x2 + 5y2)(u2 + 5v2)

= N(x+ y
√
−5)N(u+ v

√
−5)

for all integers x, y, u and v. Thus N(ωθ) = N(ω)N(θ) for all ω, θ ∈ Z[
√
−5].

If ω is a unit of the integral domain Z[
√
−5] then ω−1 ∈ Z[

√
−5], and

therefore N(ω) and N(ω−1) are both positive integers satisfying

N(ω)N(ω−1) = N(1) = 1.
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It follows that if ω is a unit of Z[
√
−5] then N(ω) = 1. From this it follows

that the only units of Z[
√
−5] are 1 and −1.

Now
6 = 2× 3 = (1 +

√
−5)(1−

√
−5),

where the factors 2, 3 and 1±
√
−5 are all elements of Z[

√
−5]. NowN(2) = 4.

Now there is no element ω of Z[
√
−5] that satisfies N(ω) = 2 or N(ω) = 3.

Thus if ω and θ are elements of Z[
√
−5] satisfying ωθ = 2 then N(ω)N(θ) =

4, and therefore either N(ω) = 1, in which case ω is a unit of Z[
√
−5], or

else N(θ) = 1, in which case θ is a unit of Z[
√
−5]. It follows that the

integer 2 is an irreducible element of Z[
√
−5]. Analogous arguments show

that 3, 1 +
√
−5 and 1−

√
−5 are irreducible elements of Z[

√
−5].

The irreducible elements 2, 3, 1 +
√
−5 and 1−

√
−5 of Z[

√
−5] are not

prime elements of Z[
√
−5]. Indeed 2 and 3 divide the product of 1+

√
−5 and

1−
√
−5, but do not divide either factor of this product. Similarly 1 +

√
−5

and 1 −
√
−5 divide the product of 2 and 3 but do not divide either 2 or

3. The principal ideals generated by these elements are neither prime nor
maximal.

Let a, b, c and d be integers. Then

(a+ b
√
−5)(c+ d

√
−5) = ac− 5bd+ (ad+ bc)

√
−5.

If a ≡ b (mod 2) then ac− 5bd ≡ a(c + d) (mod 2) and ad + bc ≡ a(c + d)
(mod 2). It follows that ac−5bd ≡ ad+bc (mod 2) whenever a ≡ b (mod 2).
Thus if

P1 = {x+ y
√
−5 ∈ Z[

√
−5] : x ≡ y (mod 2)}

then P1 is an ideal of Z[
√
−5]. This ideal contains the elements 2, 1+

√
−5 and

1−
√
−5. Given any element x+y

√
−5 of P1 there exists u+v

√
−5 ∈ Z[

√
−5]

such that x+ y
√
−5− 2(u+ v

√
−5) ∈ {0, 1 +

√
−5}. It follows that

P1 = (2, 1 +
√
−5) = (2, 1−

√
−5).

The ideal P1 is not a principal ideal of Z[
√
−5] because there is no element

of Z[
√
−5] that is not a unit but divides both 2 and 1 +

√
−5. The quotient

ring Z[
√
−5]/P1 is a finite field of order 2, and therefore the ideal P1 is a

maximal ideal of Z[
√
−5]. The ideal P 2

1 is generated by products αβ where
α and β run over a set {2, 1 +

√
−5} of generators of the ideal P1. Moreover

(1 +
√
−5)2 = −4 + 2

√
−5. Therefore P 2

1 is the ideal of Z[
√
−5] generated

by 4, 2(1 +
√
−5) and −4 + 2

√
−5. Now the generators of P 2

1 are all divisible
in Z[

√
−5] by 2, and moreover

2 = 2(1 +
√
−5)− (−4 + 2

√
−5)− 4 ∈ P 2

1 .
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It follows from this that P 2
1 = (2).

If a, b, c and d are integers, and if a ≡ b (mod 3) then

ac− 5bd ≡ a(c+ d) ≡ ad+ bc (mod 3).

Similarly if a ≡ −b (mod 3) then

ac− 5bd ≡ a(c− d) ≡ −(ad+ bc) (mod 3).

It follows that P2 and P3 are ideals of Z[
√
−5], where

P2 = {x+ y
√
−5 ∈ Z[

√
−5] : x ≡ y (mod 3)},

P3 = {x+ y
√
−5 ∈ Z[

√
−5] : x ≡ −y (mod 3)}.

These ideals are maximal ideals of Z[
√
−5], and the quotient rings Z[

√
−5]/P2

and Z[
√
−5]/P3 are finite fields of order 3. Moreover

P2 = (3, 1 +
√
−5) and P3 = (3, 1−

√
−5).

The ideal P2 of Z[
√
−5] is not a principal ideal, because there is no element of

Z[
√
−5] that is not a unit but that divides both 3 and 1+

√
−5. Similarly the

ideal P3 is not a principal ideal. The product P2P3 of the ideals P2 and P3 is
generated by products of the form αβ, where α runs over a set {3, 1 +

√
−5}

of generators for P2 and β runs over a set {3, 1−
√
−5} of generators for P3.

Moreover (1 +
√
−5)(1−

√
−5) = 6. It follows that P2P3 is generated by 9,

3(1 +
√
−5), 3(1−

√
−5) and 6. Therefore 3 ∈ P2P3, because 3 = 9− 6, and

thus P2P3 = (3).
Next we note that the ideal P1P2 is generated by 6, 2(1+

√
−5), 3(1+

√
−5)

and (1 +
√
−5)2. It follows that 1 +

√
−5 ∈ P1P2, because

1 +
√
−5 = 3(1 +

√
−5)− 2(1 +

√
−5).

Moreover 1 +
√
−5 divides all the listed generators of P1P2. It follows that

P1P2 is the principal ideal (1 +
√
−5) generated by 1 +

√
−5. Similarly

P1P3 = (1−
√
−5).

We have shown that P 2
1 = (2) and P2P3 = (3). It follows that the

principal ideal (6) factors as a product (6) = P 2
1P2P3, where P1, P2 and P3

are prime ideals.
This factorization of (6) as a product of prime ideals of Z[

√
−5] is in fact

unique. To show this, we first note that every non-zero prime ideal of Z[
√
−5]

is maximal.
Let R = Z[

√
−5], let P be a non-zero prime ideal of R, and let u+ v

√
−5

be an element of P . Then m ∈ P , where

m = N(u+ v
√
−5) = u2 + 5v2 = (u+ v

√
−5)(u− v

√
−5).
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Now if a+b
√
−5 and c+d

√
−5 and if a ≡ c (modm) and b ≡ d (modm) then

a+b
√
−5+(m) = c+d

√
−5+(m), and therefore a+b

√
−5+P = c+d

√
−5+P .

It follows that the number of cosets of P in R cannot exceed m2. But a prime
ideal of R that has only finitely many cosets in R must be a maximal ideal of
R (Lemma 2.18). (This is a consequence of the fact that an integral domain
with only finitely many elements is a field.) Thus every non-zero prime ideal
of R is maximal.

It follows that if P and Q are non-zero prime ideals of R, and if Q ⊂ P ,
then Q = P .

We can now prove the uniqueness of the factorization of the principal ideal
(6) as a product P 2

1P2P3 of prime ideals, where P1, P2 and P3 are defined as
described above. Suppose that

(6) = P 2
1P2P3 = Q1Q2 · · ·Ql.

Then Q1Q2 · · ·Ql ⊂ P1. It follows from repeated applications of Lemma 2.20
that at least one of the prime ideals Q1, Q2, . . . , Qk is contained in the prime
ideal P1. We reorder Q1, Q2, . . . , Ql, if necessary, so that Q1 ⊂ P1. Then
Q1 = P1, and thus P 2

1P2P3 = P1Q2Q3 · · ·Ql. If we then multiply both sides
of this identity by the ideal P1, we find that

(2)P1P2P3 = P 3
1P2P3 = P 2

1Q2Q3 · · ·Ql = (2)Q2Q3 · · ·Ql.

But the ideals (2)P1P2P3 and (2)Q2Q3 · · ·Ql are the images of the ideals
P1P2P3 andQ2Q3 · · ·Ql under the injective function from R to itself that mul-
tiplies all elements of R by 2. It therefore follows that P1P2P3 = Q2Q3 · · ·Ql.
We now note that at least one of the ideals Q2, Q3, . . . , Ql must be contained
in the ideal P1. We can therefore reorder these ideals, if necessary, to ensure
that Q2 ⊂ P1. Then Q2 = P1. If we then multiply both sides of the identiy
by P1, we find that

(2)P2P3 = P 2
1P2P3 = P 2

1Q3Q4 · · ·Ql = (2)Q3Q4 · · ·Ql.

It follows that P2P3 = Q3Q4 · · ·Ql. Repetition of the argument shows that
at least one of the ideals Q3Q4 · · ·Ql is in P2. We may suppose that Q3 ⊂ P2.
Then Q3 = P2, and thus P2P3 = P2Q4 · · ·Ql. If we then multiply both sides
of this identity by the ideal P3, we find that

(3)P3 = P3P2P3 = P3P2Q3 · · ·Ql = (3)Q4 · · ·Ql.

It follows that P3 = Q4 · · ·Ql. Then at least one of the ideals Q4, . . . , Ql

must be contained in P3. We may suppose that Q4 ⊂ P3, and therefore
Q4 = P3. It cannot be the case that l > 4, because multiplying both sides
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of the identity P3 = P3Q5 · · ·Ql by the ideal P2 would lead to the identity
(3) = (3)Q5 · · ·Ql, from which it would follow that the product of Q5 · · ·Ql

would be the whole of the ring R, which is impossible. Therefore l = 4, and
we have shown that Q1, Q2, Q3, Q4 can be ordered so that Q1 = Q2 = P1,
Q3 = P2 and Q4 = P3. This proves that the factorization of the principal
ideal (6) as (6) = P 2

1P2P3 is unique, subject only to reordering of the factors.
The integral domain Z[

√
−5] is not a unique factorization domain. We

have shown that the element 6 of the domain cannot be factorized as a
product of prime elements of the domain. Nevertheless the corresponding
principal ideal (6) can be factorized uniquely as a product of prime ideals. In
fact, every non-zero ideal of Z[

√
−5] can be factorized uniquely as a product

of prime ideals. The same is true of many analogous integral domains that
arise in algebraic number theory.

An algebraic number field is a subfield of the complex numbers that is a
finite-dimensional vector space over the field of rational numbers. A complex
number is said to be an algebraic integer if it is the root of a monic polyno-
mial with integer coefficients. The set of algebraic integers contained within
any algebraic number field constitute an integral domain embedded within
that number field. A significant theorem of algebraic number theory, due to
Richard Dedekind, guarantees that every non-zero proper ideal of the ring of
algebraic integers in any algebraic number field can be factored uniquely as
a product of prime ideals of that ring.

The integral domain Z[
√
−5] is the ring of integers of the algebraic number

field Q(
√
−5) that consists of all complex numbers that are of the form

a+ b
√
−5 for some rational numbers a and b. Therefore every non-zero ideal

of this domain must factorize uniquely as a product of prime ideals.

2.9 Rings of Polynomials with Coefficients in a Unique
Factorization Domain

Let R be a unique factorization domain. We shall prove that the ring R[x]
of polynomials with coefficients in R is also a unique factorization domain.

We say that a polynomial f(x) with coefficients in the unique factorization
domain R is primitive if the only elements of R that divide all the coefficients
of f(x) are the units of R. Any non-zero element of R that is not a unit of
R can be factored as a product of one or more prime elements of R, and is
thus divisible by some prime element of R. It follows that a polynomial f(x)
with coefficients in R is primitive if and only if there is no prime element of
R that divides all the coefficients of f(x).
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Lemma 2.26 Let R be a unique factorization domain, and let f(x) be a
non-zero polynomial with coefficients in R. Then there exists a non-zero
element c of R and a primitive polynomial f̂(x) with coefficients in R such
that f(x) = cf̂(x).

Proof If the polynomial f(x) is itself primitive, there is nothing to prove.
Suppose that f(x) is not primitive. Let m be the largest positive integer
with the property that all coefficients of the polynomial f(x) are divisible
by some product of m prime elements of R. Such a positive integer must
exist, because the number of factors in a product of prime elements of R
dividing a non-zero coefficient of f(x) cannot exceed the number of factors
in a representation of that coefficient as a product of prime elements of the
ring R. Let c be a non-zero element of R dividing all the coefficients of
f(x) that is a product of m prime elements of R. Then f(x) = cf̂(x) for
some polynomial f̂(x) with coefficients in R. Moreover the polynomial f̂(x)
is primitive, for if it were not primitive, then there would exist some prime
element p of R dividing all the coefficients of f̂(x), and then cp would divide
all the coefficients of f(x) and would be a product of more than m prime
elements of R, contradicting the definition of m. The result follows.

The following result is a generalization of Gauss’s Lemma concerning
products of primitive polynomials with integer coefficients.

Lemma 2.27 Let R be a unique factorization domain, and let f(x) and g(x)
be polynomials with coefficients in R. If f(x) and g(x) are both primitive then
so is their product f(x)g(x).

Proof Let p be a prime element of R, and let Rp = R/(p). Then (p) is a
prime ideal of R, and therefore the quotient ring Rp is an integral domain
(Lemma 2.14). Let νp:R→ Rp be the quotient homomorphism defined such
that νp(a) = a + (p) for all a ∈ R. Then νp induces a ring homomorphism
νp∗:R[x]→ Rp[x], where

νp∗

(
m∑
k=0

akx
k

)
=

m∑
k=0

νp(ak)x
k

for all a0, a1, . . . , am ∈ R. Let f = νp(f) and g = νp(g). Then f(x) and g(x)
are polynomials with coefficients in the quotient ring Rp whose coefficients
are the images of the corresponding coefficients of f(x) and g(x) under the
quotient homomorphism νp:R → Rp. Moreover f(x)g(x) is a polynomial in
Rp[x] whose coefficients are the images of the corresponding coefficients of
f(x)g(x) under the quotient homomorphism.
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Now f(x) is a primitive polynomial, and therefore the prime element p
of R does not divide all the coefficients of f(x). It follows that the poly-
nomial f(x) is a non-zero polynomial in Rp[x]. Similarly g(x) is a non-zero
polynomial in Rp[x]. Now the coefficient ring Rp is an integral domain. It
follows that f(x)g(x) is a non-zero polynomial whose leading coefficient is
the product of the leading coefficients of f(x) and g(x). Therefore f(x)g(x)
has at least one coefficient that is not divisible by the prime element p of R.
We have thus shown that there cannot exist any prime element of R that
divides all the coefficients of f(x)g(x). It follows that f(x)g(x) is a primitive
polynomial, as required.

Lemma 2.28 Let f(x) and g(x) be polynomials with coefficients in a unique
factorization domain R. Suppose that the polynomial f(x) is primitive and
that there exists some non-zero element c of R such that f(x) divides cg(x)
in the polynomial ring R[x]. Then f(x) divides g(x) in the polynomial ring
R[x].

Proof The result follows immediately in the case where c is a unit of the
coefficient ring R.

Suppose that the primitive polynomial f(x) divides pg(x), where p is a
prime element of R. Then pg(x) = f(x)h(x) for some non-zero polynomial
h(x) with coefficients in R. Moreover there exists a primitive polynomial k(x)
and a non-zero element b of R such that h(x) = bk(x) (Lemma 2.26). Then
pg(x) = bf(x)k(x). But f(x)k(x), being a product of primitive polynomials,
is itself a primitive polynomial (Lemma 2.27). It follows that at least one
coefficient of f(x)k(x) is not divisible by the prime element p of R, and
therefore p must divide b. Let b = pa. Then g(x) = af(x)k(x), and thus
f(x) divides g(x) in the polynomial ring R[x].

If the multiplier c is neither a unit nor a prime element of R then it is
the product of a finite number of prime elements of R, because R is a unique
factorization domain. We have proved the result in the special case where the
multiplier is a prime element of R. It follows that if the primitive polynomial
f(x) divides p1p2 · · · pkg(x) then f(x) divides p2p3 · · · pkg(x). The result in
the general case therefore follows by induction on the number of prime factors
of the multiplier.

Let R be a unique factorization domain. The units of the polynomial ring
R[x] are the polynomials of degree zero whose coeffficients are units of the
ring R. (Thus a polynomial with coefficients in R is a unit of R[x] if and
only if it is a ‘constant polynomial’ whose ‘value’ is a unit of R.)

It is not possible for a polynomial of degree zero to divide a primitive
polynomial unless it is a unit of R[x]. It follows that a primitive polynomial
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with coefficients in R is an irreducible element of R[x] if and only if it cannot
be factored as a product of polynomials of lower degree with coefficients in
R. We define an irreducible primitive polynomial with coefficients in R to be
a primitive polynomial of degree greater than zero that cannot be factored
as a product of polynomials of lower degree.

Lemma 2.29 Let R be a unique factorization domain. Then the irreducible
elements of the polynomial ring R are the polynomials of degree zero whose
coefficients are prime elements of R and the irreducible primitive polynomials
of positive degree. Moreover every non-zero polynomial in R[x] that is not
itself a unit of R[x] may be factored as a product of one or more irreducible
elements of R[x].

Proof The subring of R[x] consisting of the polynomials of degree zero is
isomorphic to the coefficient ring R, and the factors of a polynomial of degree
zero must themselves be polynomials of degree zero. It follows that the
irreducible elements of R[x] that are of degree zero are those polynomials of
degree zero whose coefficients are prime elements of R[x].

Any polynomial of positive degree that is not primitive is divisible by
some non-zero element of the coefficient ring R that is not a unit of R, and
thus cannot be an irreducible element of R. It follows that the irreducible
elements of R[x] that are of positive degree are the irreducible primitive
polynomials with coefficients in R.

Any primitive polynomial of positive degree with coefficients in R that is
not itself an irreducible primitive polynomial can be factored as a product
of polynomials of lower degree. The factors must themselves be primitive
polynomials. It follows by induction on the degree of the primitive poly-
nomial that any primitive polynomial of positive degree with coefficients in
R can be factored as a product of a finite number of irreducible primitive
polynomials. Therefore any non-zero polynomial with coefficients in R that
is not a unit of R[x] can be factored as the product of a polynomial of degree
zero and a primitive polynomial, and can therefore be factored as a product
of irreducible elements of the polynomial ring R[x].

Lemma 2.30 Let R be a unique factorization domain. Then any polynomial
of degree zero whose coefficient is a prime element of R is a prime element
of the polynomial ring R[x].

Proof Let p be a prime element of R, and let g(x) and h(x) be polynomials
with coefficients in R. Then there exist primitive polynomials ĝ(x) and ĥ(x)
and elements a and b of R such that g(x) = aĝ(x) and h(x) = bĥ(x). Suppose
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that p divides all the coefficients of the polynomial g(x)h(x). Now g(x)h(x) =
abĝ(x)ĥ(x). Moroever ĝ(x)ĥ(x) is a primitive polynomial, because the prod-
uct of two primitive polynomials is always primitive (Lemma 2.27). It follows
that there must exist at least one coefficient of ĝ(x)ĥ(x) that is not divisible
by the prime element p of R, and therefore ab is divisible by p. But then
either a is divisible by p, in which case all the coefficients of g(x) are divisible
by p, or else b is divisible by p, in which case all the coefficients of h(x) are
divisible by p. Thus the polynomial of degree zero with coefficient p is a
prime element of the polynomial ring R[x].

Lemma 2.31 Let R be an integral domain, let I be a non-zero ideal of the
polynomial ring R[x], and let w(x) be a non-zero polynomial belonging to I
whose degree is less than or equal to the degree of every other non-zero poly-
nomial belonging to the ideal I. Then, given any polynomial g(x) belonging
to I, there exists some non-zero element c of R with the property that cg(x)
is divisible in R[x] by w[x].

Proof Let m be the degree of the polynomial w(x), and let let k be an
integer satisfying k ≥ m. Suppose that, given any non-zero polynomial h(x)
in I of degree less than k, there exists some non-zero element b of R with the
property that bh(x) is divisible by w(x) in R[x]. Let g(x) be a polynomial
in I of degree k. Then there exist non-zero elements d and a of R such
that dg(x) and axk−mw(x) have the same leading coefficient. Then either
dg(x)−axk−mw(x) = 0R or else dg(x)−axk−mw(x) is a non-zero polynomial
belonging to the ideal I whose degree is less than k. There must then exist
some non-zero element b for which b(dg(x)−axk−1w(x)) is divisible by w(x).
Let c = bd. Then c is non-zero and cg(x) is divisible in R[x] by w[x]. The
result therefore follows by induction on the degree of the polynomial g(x).

Lemma 2.32 Let R be a unique factorization domain, let f(x) be an irre-
ducible primitive polynomial with coefficients in R, and let g(x) and h(x) be
polynomials with coefficients in R. Suppose that f(x) divides g(x)h(x) in
R[x]. Then either f(x) divides g(x) in R[x] or f(x) divides h(x) in R[x].
Thus every irreducible primitive polynomial with coefficients in R is a prime
element of R[x].

Proof Suppose that the irreducible primitive polynomial f(x) does not di-
vide g(x) in R[x]. We must prove that f(x) then divides h(x) in R[x]. Let I
the ideal of R[x] generated by the polynomials f(x) and g(x), and let m be
the smallest non-negative integer with the property that the ideal I contains
a non-zero polynomial of degree m. Then there exists a primitive polynomial
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k(x) of degree m and a non-zero element a of R such that ak(x) ∈ I. It then
follows from Lemma 2.31 that there exist non-zero elements c and d of R such
that cf(x) and dg(x) are divisible by k(x). It then follows from Lemma 2.28
that f(x) and g(x) are both divisible by the primitive polynomial k(x) in
R[x]. But f(x) is an irreducible element of R[x] (Lemma 2.29) and no asso-
ciate of f(x) in R[x] can divide g(x). It follows that k(x) must be a unit of
the ring R[x], and therefore k(x) is a polynomial of degree zero whose coeffi-
cient u is a unit of the ring R. The polynomial of degree zero with coefficient
au then belongs to the ideal I generated by f(x) and g(x). It follows that
there exist polynomials q(x) and r(x) such that q(x)f(x) + r(x)g(x) = au.
Then

q(x)f(x)h(x) + r(x)g(x)h(x) = auh(x).

It follows that f(x) divides auh(x) in R[x], because f(x) divides g(x)h(x)
in R[x]. It then follows from Lemma 2.28 that f(x) divides h(x) in R[x], as
required.

Proposition 2.33 Let R be a unique factorization domain. Then the ring
R[x] of polynomials with coefficients in R is also a unique factorization do-
main.

Proof An integral domain is a unique factorization domain if and only if
every non-zero element of the domain that is not a unit can be factored as
the product of one or more prime elements of the domain. We have shown
that any non-zero polynomial in R[x] that is not a unit can be factored as a
product of irreducible elements of R[x], and that the irreducible elements of
R[x] are the polynomials of degree zero whose coefficients are prime elements
of R and the primitive irreducible polynomials of positive degree in R[x]
(Lemma 2.29). Moreover the polynomials of degree zero whose coefficients are
prime are prime elements of R[x] (Lemma 2.30), and the irreducible primitive
polynomials are also prime elements of R[x]. (Lemma 2.32). Therefore every
element of R[x] that is not a unit can be factored as a product of one or more
prime elements of R[x], and thus R[x] is a unique factorization domain.

Example It follows from Proposition 2.33 that the ring Z[x] of polynomials
with integer coefficients is a unique factorization domain. This integral do-
main is not a principal ideal domain. Indeed let p be a prime number, and
let

Ip = {f(x) ∈ Z[x] : p divides f(0)}.

Then Ip is a prime ideal of Z[x], for if f(x) and g(x) are polynomials with
integer coefficients, and if fg ∈ Ip then p|f(0)g(0). But then either p|f(0) or
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else p|g(0), and thus either f ∈ Ip or g ∈ Ip. The prime ideal Ip is generated
by the constant polynomial p and the polynomial x. However this prime
ideal is not a principal ideal, because the only common divisors of p and x
in Z[x] are the constant polynomials with values ±1.

2.10 Polynomial Rings in Several Indeterminates

Let R be a unital commutative ring. We define the ring R[x1, x2, . . . , xn]
of polynomials in independent interminates x1, x2, . . . , xn with coefficients in
the ring R.

We define a multi-index of dimension n to be an n-tuple (j1, j2, . . . , jn)
of non-negative integers. A polynomial in the independent indeterminates
x1, x2, . . . , xn is represented as a finite sum∑

(j1,j2,...,jn)∈M

rj1,j2,...,jnx
j1
1 x

j2
2 · · ·xjnn

where the sum is taken over a finite set M of multi-indices of dimension n,
and where rj1,j2,...,jn ∈ R for all (j1, j2, . . . , jn) ∈ M . We may then represent
this polynomial formally as a sum

∞∑
j1,j2,...,jn=0

rj1,j2,...,jnx
j1
1 x

j2
2 · · ·xjnn

taken over all multi-indices (j1, j2, . . . , jn), where the coefficients rj1,j2,...,jn
belong to the coefficient ring R, and where only finitely many of these coef-
ficients are non-zero. The coefficients of a polynomial in x1, x2, . . . , xn deter-
mine and are determined by that polynomial. Thus a polynomial is specified
uniquely and completely by specifying the coefficient rj1,j2,...,jn of that poly-
nomial associated with each multi-index (j1, j2, . . . , jn).

Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be polynomials in the indepen-
dent indeterminates x1, x2, . . . , xn and let

f(x1, x2, . . . , xn) =
∞∑

j1,j2,...,jn=0

rj1,j2,...,jnx
j1
1 x

j2
2 · · · xjnn ,

g(x1, x2, . . . , xn) =
∞∑

j1,j2,...,jn=0

sj1,j2,...,jnx
j1
1 x

j2
2 · · ·xjnn .

Then the sum and product of these polynomials are defined such that

f(x1, x2, . . . , xn) + g(x1, x2, . . . , xn)

=
∞∑

j1,j2,...,jn=0

(rj1,j2,...,jn + sj1,j2,...,jn)xj11 x
j2
2 · · ·xjnn
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and

f(x1, x2, . . . , xn)g(x1, x2, . . . , xn)

=
∞∑

j1,j2,...,jn=0

tj1,j2,...,jnx
j1
1 x

j2
2 · · · xjnn ,

where

tj1,j2,...,jn =

j1∑
k1=0

j2∑
k2=0

· · ·
jn∑

kn=0

rk1,k2,...,knsj1−k1,j2−k2,...,jn−kn

for each multi-index (j1, j2, . . . , jn) of dimension n. The set R[x1, x2, . . . , xn]
of all polynomials in the independent inteterminates x1, x2, . . . , xn with co-
efficients in the ring R is then a unital commutative ring with respect to
these operations of addition and multiplication. Moreover R[x1, x2, . . . , xn]
is naturally isomorphic to R[x1, . . . , xn−1][xn] for all n > 1. Indeed any
polynomial in the independent indeterminates x1, x2, . . . , xn may be viewed
as a polynomial in the indeterminate xn with coefficients in the polynomial
ring R[x1, . . . , xn−1], and the definitions of addition and multiplication in
the polynomial ring R[x1, x2, . . . , xn] are consistent with this way of regard-
ing polynomials in x1, x2, . . . , xn as polynomials in xn with coefficients in
R[x1, . . . , xn−1]. This observation allows one to obtain results concerning
polynomial rings in several independent indeterminates by induction on the
number of indeterminates. Results that can be proved by induction on the
number of indeterminates include the following.

Proposition 2.34 The ring R[x1, x2, . . . , xn] of polynomials in n indepen-
dent indeterminates x1, x2, . . . , xn with coefficients in an integral domain R
is itself an integral domain.

Proof The result in the case n = 1 follows from the fact that the product
of the leading coefficients of two non-zero polynomials f(x1) and g(x1) is a
non-zero element of the integral domain R, and is thus the leading coefficient
of the product polynomial f(x1)g(x1). The result when n > 1 then follows
by induction on the number n of indeterminates in view of the fact that
R[x1, x2, . . . , xn] ∼= R[x1, . . . , xn−1][xn] for all n > 1.

Proposition 2.35 The ring R[x1, x2, . . . , xn] of polynomials in n indepen-
dent indeterminates x1, x2, . . . , xn with coefficients in a unique factorization
domain R is itself a unique factorization domain.

Proof The result for n = 1 was proved as Proposition 2.33. The result for
n > 1 then follows by induction on the number n of indeterminates in view
of the fact that R[x1, x2, . . . , xn] ∼= R[x1, . . . , xn−1][xn] for all n > 1.
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Corollary 2.36 The ring K[x1, x2, . . . , xn] of polynomials in n independent
indeterminates x1, x2, . . . , xn with coefficients in a field K is a unique factor-
ization domain.

Corollary 2.37 The ring Z[x1, x2, . . . , xn] of polynomials in n independent
indeterminates x1, x2, . . . , xn with integer coefficients is a unique factoriza-
tion domain.

Example Let K be a field, and let K[x, y] be the ring of polynomials in
two independent interminates x and y. Any polynomial f(x, y) in x and

y with coefficients in K can be represented in the form g0(x) +
d∑
j=1

gj(x)yj,

where g0(x), g1(x), . . . , gd(x) are polynomials in the indeterminate x with
coefficients in K. These polynomials g0, g1, . . . , gd are uniquely determined by
the polynomial f(x). There is thus a well-defined function ϕ:K[x, y]→ K[x],
where

ϕ

(
g0(x) +

d∑
j=1

gj(x)yj

)
= g0(x).

for all g0, g1, . . . , gd ∈ K[x]. Moreover ϕ(f)(x) = f(x, 0K) for all f ∈ K[x, y],
where f(x, 0K) denotes the polynomial in the indeterminate x obtained by
substituting the zero element 0K of the field K for the indeterminate y. The
function ϕ:K[x, y]→ K[x] is a surjective ring homomorphism, and its kernel
is the ideal P of K[x, y] generated by the polynomial y. Now K[x, y]/P ∼=
K[x], and K[x] is an integral domain. It follows that the principal ideal P
of K[x, y] generated by the polynomial y is a prime ideal of K[x, y] (see
Lemma 2.14). The function ε:K[x, y] → K that maps a polynomial f(x, y)
to its value f(0K , 0K) at (0K , 0K) is also a surjective ring homomorphism. It
satisfies

ε

(
dx∑
j=0

dy∑
k=0

aj,kx
jyk

)
= a0,0

for all coefficients aj,k, where aj,k ∈ K for j = 0, 1, . . . , dx and k = 0, 1, . . . , dy.
The kernel of this homomorphism is the ideal M generated by the polyno-
mials x and y. It follows that K[x, y]/M is a field isomorphic to the field K
of coefficients, and thus M is a maximal ideal of K[x, y] (see Lemma 2.13).
This maximal ideal M is not a principal ideal, because there is no polynomial
dividing both generators x and y of M that is not a unit of K[x, y]. We see
therefore that polynomial ring K[x, y] in two independent indeterminates x
and y with coefficients in a field K is a unique factorization domain, but it is
not a principal ideal domain, and it contains non-zero prime ideals that are
not maximal ideals of K[x, y].
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Each pair (a, b) of elements of K determines a corresponding maximal
ideal (x−a, y−b) of the polynomial ring K[x, y] generated by the polynomials
x− a and y− b. This maximal ideal is the kernel of the homomorphism that
sends each polynomial f(x, y) with coefficients in K to its value f(a, b) when
x = a and y = b. Also each irreducible polynomial f(x, y) is a prime element
of the polynomial ring K[x, y], because all irreducible elements of a unique
factorization domain are prime. It follows that each irreducible polynomial
f(x, y) generates a prime ideal of K[x, y], and therefore the corresponding
quotient ring K[x, y]/(f) is an integral domain for all irreducible polynomials
f(x, y) in the indeterminates x and y.

Consider now the zero sets of polynomials in n indeterminates. Each
subset S of the ring K[X1, X2, . . . , Xn] of polynomials in the indeterminates
X1, X2, . . . , Xn with coefficients in the field K determines a corresponding
subset V (S) of affine n-dimensional space Kn, where

V (S) = {(x1, x2, . . . , xn) ∈ Kn : f(x1, x2, . . . , xn) = 0K for all f ∈ S}.

The subset V (S) of Kn is the set of common zeros of all the polynomials
belonging to the subset S of the polynomial ring. Such subsets of Kn are re-
ferred to as algebraic sets. An affine algebraic variety is an algebraic set V (P )
determined by a prime ideal P of the polynomial ring K[X1, X2, . . . , Xn]. It
can be shown that every algebraic set in Kn is a finite union of affine algebraic
varieties.

A field K is said to be algebraically closed if each polynomial in K[x] of de-
gree greater than zero has a root in the field K. If the field K is algebraically
closed then each polynomial in K[x] splits over K. David Hilbert proved a
fundamental theorem, known as Hilbert’s Nullstellensatz, which guarantees
that there is a one-to-one correspondence between prime ideals of the poly-
nomial ring K[X1, X2, . . . , Xn] and affine algebraic varieties in Kn, provided
that the ground field K is algebraically closed. This result is applicable in
the classical case where K is the field C of complex numbers.

2.11 Rings of Fractions

Definition Let R be a unital commutative ring. A subset S of R is said to
be a multiplicatively closed subset of R if 1R ∈ S and uv ∈ S for all u ∈ S
and v ∈ S.

Lemma 2.38 Let S be a multiplicatively closed subset of a unital commuta-
tive ring R, and let ∼S be the relation on R×S defined so that elements (r, s)
and (r′, s′) of R × S satisfy (r, s) ∼S (r′, s′) if and only if there exists some
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element u of S for which us′r = usr′. Then the relation ∼S is an equivalence
relation on R× S.

Proof It is clear from the definition of the relation ∼S that (r, s) ∼S (r, s)
for all (r, s) ∈ R × S. Moreover elements (r, s) and (r′, s′) of R × S satisfy
(r, s) ∼S (r′, s′) if and only if (r′, s′) ∼S (r, s). Thus the relation ∼S on R×S
is both reflexive and symmetric.

Let (r, s), (r′, s′) and (r′′, s′′) be elements of R×S. Suppose that (r, s) ∼S
(r′, s′) and (r′, s′) ∼S (r′′, s′′). Then there exist elements u and v of S such
that us′r = usr′ and vs′′r′ = vs′r′′. Then

(uvs′)(s′′r) = (vs′′)(us′r) = (vs′′)(usr′)

= (us)(vs′′r′) = (us)(vs′r′′)

= (uvs′)(sr′′),

and uvs′ ∈ S, and therefore (r, s) ∼S (r′′, s′′). Thus the relation ∼S on
R× S is transitive. It follows that this relation is an equivalence relation on
R× S.

Lemma 2.39 Let S be a multiplicatively closed subset of a unital commu-
tative ring R, and let ∼S be the equivalence relation on R × S defined so
that elements (r, s) and (r′, s′) of R×S satisfy (r, s) ∼S (r′, s′) if and only if
there exists some element u of S for which us′r = usr′. Let (r1, s1), (r′1, s

′
1),

(r2, s2) and (r′2, s
′
2) be elements of R × S satisfying (r1, s1) ∼S (r′1, s

′
1) and

(r2, s2) ∼S (r′2, s
′
2). Then

(s2r1 + s1r2, s1s2) ∼S (s′2r
′
1 + s′1r

′
2, s
′
1s
′
2)

and
(r1r2, s1s2) ∼S (r′1r

′
2, s
′
1s
′
2).

Proof There exist elements u1 and u2 of S such that u1s
′
1r1 = u1s1r

′
1 and

u2s
′
2r2 = u2s2r

′
2. Then

(u1u2)(s
′
1s
′
2)(s2r1 + s1r2) = (u2s2s

′
2)(u1s

′
1r1) + (u1s1s

′
1)(u2s

′
2r2)

= (u2s2s
′
2)(u1s1r

′
1) + (u1s1s

′
1)(u2s2r

′
2)

= (u1u2)(s1s2)(s
′
2r
′
1 + s′1r

′
2),

and u1u2 ∈ S, and therefore

(s2r1 + s1r2, s1s2) ∼S (s′2r
′
1 + s′1r

′
2, s
′
1s
′
2).
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Also

(u1u2)(s
′
1s
′
2)(r1r2) = (u1s

′
1r1)(u2s

′
2r2) = (u1s1r

′
1)(u2s2r

′
2)

= (u1u2)(s1s2)(r
′
1r
′
2),

and therefore
(r1r2, s1s2) ∼S (r′1r

′
2, s
′
1s
′
2),

as required.

Let S be a multiplicatively closed subset of a unital commutative ring R,
and let ∼S be the equivalence relation on R × S defined so that elements
(r, s) and (r′, s′) of R × S satisfy (r, s) ∼S (r′, s′) if and only if there exists
some element u of S for which us′r = usr′. Then the equivalence relation ∼S
partitions the set R × S into equivalence classes. We denote by r/s the
equivalence class of an element (r, s) of R × S. Then r, r′ ∈ R and s, s′ ∈
S satisfy r/s = r′/s′ if and only if there exists some element u of S for
which us′r = urs′. It follows from Lemma 2.39 that there are well-defined
operations of addition and multiplication defined on S−1R, where

(r1/s1) + (r2s2) = (s2r1 + s1r2)/(s1s2) and (r1/s1)(r2/s2) = (r1r2)/(s1s2).

If 0R ∈ S then S−1R is the zero ring, consisting of a single element. We now
show that if 0R 6∈ S then S−1R is a unital commutative ring.

Proposition 2.40 Let S be a multiplicatively closed subset of a unital com-
mutative ring R, where 0R 6∈ S, and let ∼S be the equivalence relation on
R × S defined so that elements (r, s) and (r′, s′) of R × S satisfy (r, s) ∼S
(r′, s′) if and only if there exists some element u of S for which us′r = usr′.
Let S−1R be the set of equivalence classes r/s of elements (r, s) of R×S with
respect to this equivalence relation, with operations of addition and multipli-
cation of equivalence classes defined such that

(r1/s1) + (r2s2) = (s2r1 + s1r2)/(s1s2) and (r1/s1)(r2/s2) = (r1r2)/(s1s2)

for all r1, r2 ∈ R and s1, s2 ∈ S. Then S−1R is a unital commutative ring
with zero element 0R/1R and identity element 1R/1R. Moreover s1/s2 is a
unit of S−1R for all elements s1, s2 ∈ S, and (s1/s2)

−1 = s2/s1.

Proof The definition of addition on S−1R ensures that the operations of
addition and multiplication are commutative, and that multiplication is dis-
tributive over addition. Let r1, r2, r3 ∈ R and s1, s2, s3 ∈ S. Then

((r1/s1) + (r2/s2)) + (r3/s3) = ((s2r1 + s1r2)/(s1s2)) + (r3/s3)

= (s3s2r1 + s3s1r2 + s1s2r3)/(s1s2s3)

= (r1/s1) + ((s3r2 + s2r3)/(s2s3))

= (r1/s1) + ((r2/s2) + (r3/s3))
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and

((r1/s1)(r2/s2))(r3/s3) = ((r1r2)/(s1s2))(r3/s3)

= (r1r2r3)/(s1s2s3)

= (r1/s1)((r2r3)/(s2s3))

= (r1/s1)((r2/s2)(r3/s3)).

Thus the operations of addition and multiplication on S−1R are associative.
The definition of addition on S−1R ensures that (r/s) + (0R/1R) = r/s

and
(r/s) + (−r/s) = 0R/s

2 = 0R/1R

for all r ∈ R and s ∈ S. Therefore S−1R is an Abelian group with respect to
addition, and the zero element of S−1R is 0R/1R. Moreover multiplication is
commutative, associative and distributive over addition, and therefore S−1R
is a commutative ring.

The proposition is applicable only in the case where 0R 6∈ S. This ensures
that u1R1R 6= u1R0R for all u ∈ S, and therefore 1R/1R 6= 0R/1R. Thus
S−1R has a multiplicative identity element 1R/1R that is distinct from the
zero element 0R/1R of the ring, and is thus S−1R is a unital commutative
ring.

Finally we note that (s1/s2)(s2/s1) = (s1s2)/(s1s2) = 1R/1R for all
s1, s2 ∈ S. It follows that s1/s2 is a unit of S−1R for all s1, s2 ∈ S, and
that (s1/s2)

−1 = s2/s1.

Lemma 2.41 Let R be a unital commutative ring, and let S be a multi-
plicatively closed subset of S, where 0R 6∈ S. Then there is a natural unital
homomorphism λ:R → S−1R, where λ(r) = r/1R for all r ∈ R. Moreover,
given any unital ring T , and given any unital homomorphism ϕ:R→ T that
maps the multiplicatively closed subset S into the group of units of T , there
exists a unique unital homomorphism ϕ̂:S−1R→ T such that ϕ = ϕ̂◦λ. This
homomorphism ϕ̂ satisfies ϕ̂(r/s) = ϕ(r)ϕ(s)−1 for all r ∈ R and s ∈ S.

Proof It follows directly from the definition of addition and multiplica-
tion on S−1R that (r1/1R) + (r2/1R) = (r1 + r2)/1R and (r1/1R)(r2/1R) =
(r1r2)/1R for all r1, r2 ∈ R. Therefore λ:R → S−1R is a homomorphism.
Moreover this homomorphism maps the identity element 1R of R to the
identity element 1R/1R of S−1R.

Let ϕ:R→ T be a unital homomorphism from R to a unital ring T that
maps the multiplicatively closed subset S of R to the group of units of T ,
and let r, r′ ∈ R and s, s′ ∈ S satisfy r/s = r′/s′. Then there exists some
element u of S such that us′r = usr′. Then ϕ(u)ϕ(s′)ϕ(r) = ϕ(u)ϕ(s)ϕ(r′).
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But ϕ(u), ϕ(s) and ϕ(s′) are units of T . It follows that ϕ(r)ϕ(s)−1 =
ϕ(r′)ϕ(s′)−1. There is thus a well-defined function ϕ̂:S−1R → T satisfy-
ing ϕ̂(r/s) = ϕ(r)ϕ(s)−1 for all r ∈ R and s ∈ S. Moreover

ϕ̂((r1/s1) + (r2/s2)) = ϕ̂((s2r1 + s1r2)/(s1s2))

= ϕ(s2r1 + s1r2)ϕ(s1s2)
−1

= (ϕ(s2)ϕ(r1) + ϕ(s1)ϕ(r2))ϕ(s1)
−1ϕ(s2)

−1

= ϕ(r1)ϕ(s1)
−1 + ϕ(r2)ϕ(s2)

−1

= ϕ̂(r1/s1) + ϕ̂(r2/s2)

and

ϕ̂((r1/s1)(r2/s2)) = ϕ̂((r1r2)/(s1s2))

= ϕ(r1r2)ϕ(s1s2)
−1

= ϕ(r1)ϕ(r2)ϕ(s1)
−1ϕ(s2)

−1

= ϕ̂(r1/s1)ϕ̂(r2/s2)

for all r1, r2 ∈ R and s1, s2 ∈ S, and ϕ̂(1R/1R) = 1T , where 1T is the
multiplicative identity element of T . Also ϕ̂(λ(r)) = ϕ̂(r/1R) = ϕ(r) for all
r ∈ R. It follows that ϕ̂:S−1R→ T is a unital homomorphism that satisfies
ϕ̂ ◦ λ = ϕ.

Now let ψ:S−1R→ T be a unital homomorphism that satisfies ψ◦λ = ϕ,
and let r and s be elements of R and S respectively. Then (r/s)(s/1R) =
r/1R. Moreover ψ(r/1R) = ψ(λ(r)) = ϕ(r) and ψ(s/1R) = ψ(λ(s)) = ϕ(s).
Therefore ψ(r/s)ϕ(s) = ϕ(r), and thus ψ(r/s) = ϕ(r)ϕ(s)−1 = ϕ̂(r/s).
This shows that ϕ̂:S−1R → T is the unique unital homomorphism from
S−1R→ T that satisfies ϕ̂ ◦ λ = ϕ.

Let R be a unital commutative ring. An element x of R is said to be a
zero divisor if there exists some non-zero element y of R for which xy = 0R.
The multiplicative identity element 1R of R is not a zero divisor.

Definition An element x of a unital commutative ring R is said to be regular
if it is not a zero divisor.

The multiplicative identity element 1R is regular. Let x and y be regular
elements of R. Then x and y are non-zero elements of R, because the zero
element of R is a zero divisor. Moreover xyz 6= 0R for all non-zero elements
z if R. It follows that xy is a regular element of R. Thus the set Rreg of
regular elements of the unital commutative ring R is a multiplicatively closed
set. We can therefore form the corresponding ring of fractions Q(R), where
Q(R) = R−1regR.
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Definition Let R be a unital commutative ring. The total ring of fractions
Q(R) of R is the ring R−1regR, where Rreg is the set consisting of all regular
elements of R.

Lemma 2.42 Let R be a unital commutative ring, and let S be a multiplica-
tively closed subset of S, where 0R 6∈ S. Let λ:R → S−1R be the natural
homomorphism that maps each element r of R to r/1R. Then the homomor-
phism λ is injective if and only if every element of the set S is a regular
element of R.

Proof Suppose that u ∈ S is a zero divisor. Then there exists some non-
zero element r of R for which ur = 0R. But then λ(r) = 0R/1R, and thus
r ∈ kerλ. Thus if S contains a zero divisor then the homomorphism λ is
not injective. Conversely if the homomorphism λ is not injective then there
exists some non-zero element r of R satisfying r/1R = 0R/1R. There must
then exist some element u ∈ S satisfying ur = 0R, and this element u is a
zero divisor of R. It follows that the multiplicative subset S of R contains
a zero divisor if and only if the natural homomorphism λ:R → S−1R is not
injective. The result follows.

Let R be a unital commutative ring. It follows from Lemma 2.42 that the
homomorphism λ0:R→ Q(R) from R to its total ring of fractions Q(R) that
sends each element r of R to r/1R is injective. Moreover if S is a multiplica-
tively closed subset of R, and if the homomorphism λ:R → S−1R sending
each element r of R to r/1R is injective, then S is a subset of the set Rreg

of regular elements of R, and the ring S−1R can therefore be embedded as
a subring of Q(R). Thus the total ring of fractions Q(R) of R is the largest
ring of fractions into which the ring R can be embedded.

Other important rings of fractions arise through a process known as lo-
calization. Let R be a unital commutative ring, let P be a prime ideal of
R, and let S be the complement of P in R. It follows from the definition of
prime ideals that S is a multiplicatively closed subset of R. Indeed an ideal
of R is prime if and only if its complement is multiplicatively closed. We
define RP = S−1R, where S = R \ P . The ring RP is the localization of R
at the prime ideal P . Each ideal I of R determines a corresponding ideal IP
of RP , where

IP = {x/s ∈ RP : x ∈ I and s ∈ R \ P}.

Lemma 2.43 Let R be a unital commutative ring, let P be a prime ideal of
R, and let RP be the localization (R\P )−1R of R at the prime ideal P . Then
the ideal PP of RP consisting of all elements of RP that are of the form x/s
for some x ∈ P and s ∈ R \ P is a maximal ideal of RP . Moreover it is the
only maximal ideal of RP .
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Proof We show that PP is a proper ideal of RP . Suppose that there were
to exist x ∈ P and s ∈ R \ P such that x/s = 1R/1R. Then there would
exist some element u of R \ P such that ux = us. But this is impossible,
because ux would be an element of the ideal P and us would be an element
of the complement R \ P of P . Therefore the identity element of RP does
not belong to the ideal PP , and hence this ideal is a proper ideal of RP .

If r ∈ R, s ∈ R \ P and r/s ∈ RP \ PP then r ∈ R \ P , and therefore
r/s is a unit of RP with inverse s/r. It follows that no proper ideal of RP

can intersect the complement of PP and therefore all proper ideals of RP are
contained in PP . It follows that PP is a maximal ideal of RP , and is the only
maximal ideal of RP .

Let f be an element of a unital commutative ring R, and let S be the set
{1R, f, f 2, f 3, . . .} of powers of f . Then S is a multiplicatively closed subset
of R which therefore gives rise to a corresponding ring of fractions Rf , where
Rf = S−1R. Elements of Rf are represented as fractions of the form r/fk,
where r ∈ R and k is some non-negative integer. If fn = 0R for some positive
integer n then Rf is the zero ring.

If R is an integral domain then the set R∗ of non-zero elements of R is
a multiplicatively closed subset of R. There is thus a corresponding ring
R∗−1R of fractions. The non-zero elements of R∗−1R are the elements that
are of the form s1/s2, where s1, s2 ∈ R∗. Each of these elements is a unit
of R∗−1R. It follows that R∗−1R is a field. In this case the set of non-zero
elements of the integral domain R coincides with the set of regular elements
of R. It follows that the field R∗−1R is the total ring of fractions of R. It is
also the localization of R at the zero ideal of R.

Definition Let R be an integral domain. The field of fractions Frac(R) of
R is the field R∗−1R, where R∗ is the set R \ {0R} of non-zero elements of R.

The basic properties of the field of fractions of an integral domain are
summarized in the following results which follow from the discussion above.

Proposition 2.44 Let R be an integral domain, and let Frac(R) be its field
of fractions. Then every element of Frac(R) is represented by a quotient of
the form r/s, where r, s ∈ R and s 6= 0R. Moreover if r, r′, s and s′ are
elements of R, and if s 6= 0R and s′ 6= 0R, then r/s = r′/s′ if and only if
s′r = sr′. The operations of addition and multiplication are defined on the
field of fractions Frac(R) so that

(r1/s1) + (r2s2) = (s2r1 + s1r2)/(s1s2) and (r1/s1)(r2/s2) = (r1r2)/(s1s2)
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for all r1, r2 ∈ R and s1, s2 ∈ R \ {0R}. The zero element of Frac(R) is
0R/1R, and the multiplicative identity element is 1R/1R. The function that
sends each element r of the integral domain R to r/1R is an injective unital
homomorphism that embeds the integral domain R in its field of fractions.

Lemma 2.45 Let R be an integral domain, and let Frac(R) be the field of
fractions of R. Then every unital ring homomorphism from R to a field L
extends uniquely to a homomorphism from Frac(R) to L.

Lemma 2.46 Let R be an integral domain, let Frac(R) be the field of frac-
tions of R, and let S be a multiplicatively closed subset of R that does not
contain the zero element of R. Then the embedding of R in Frac(R) induces
an embedding of the ring of fractions S−1R in the field Frac(R).

2.12 Integrally Closed Domains

Definition Let R and T be unital commutative rings, where R ⊂ T . The
ring R is said to be integrally closed in T if every element of T that is a root
of some monic polynomial with coefficients in R belongs to R.

Definition An integral domain R is said to be integrally closed if it is in-
tegrally closed in its field of fractions. An integrally closed domain is an
integral domain that is integrally closed.

Proposition 2.47 All unique factorization domains are integrally closed.

Proof Let R be a unique factorization domain, and let r and s be elements
of R, where s 6= 0R. Suppose that the quotient r/s of r and s in the field
of fractions of R is a root of some monic polynomial f(x) of degree n with
coefficients in R. Then n > 0. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + xn.

Then
0 = snf(r/s) = a0s

n + a1s
n−1r + · · ·+ an−1sr

n−1 + rn,

and thus
rn = −s(a0sn−1 + a1s

n−2r + · · ·+ an−1r
n−1).

It follows that s divides rn. If s is a unit of R then there is nothing to prove.
If s is not a unit of R, then s factors as a product of prime elements of R,
because R is a unique factorization domain. Let p be a prime factor of s.
Then p divides rn, and therefore p divides r. Let r = pr′ and s = ps′. Then
r/s = r′/s′. Moreover if s is a product of k prime elements of R, where
k > 1, then s′ is a product of k − 1 prime elements of R, and if s is itself
prime then s′ is a unit of R. The result therefore follows by induction on the
number of prime factors of s.
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2.13 Irreducibility of Polynomials over Fields of Frac-
tions

A polynomial with integer coefficients is irreducible over the field of rational
numbers if and only if it cannot be factored as a product of polynomials of
lower degree with integer coefficients. This result can be generalized so as to
apply to polynomials with coefficients in any unique factorization domain.

Proposition 2.48 Let f(x) be a polynomial with coefficients in a unique
factorization domain R. Suppose that f(x) cannot be factored as a product
of polynomials of lower degree with coefficients in R. Then f(x) is irreducible
over the field of fractions of R.

Proof Let Frac(R) be the field of fractions of R. The natural homomorphism
from R to Frac(R) that sends each element r of R to r/1R is injective, and
therefore embeds R into Frac(R). We can identify the unique factorization
domain R with its image under this embedding. We therefore regard R as a
subring of the field Frac(R).

Let g(x) be a polynomial with coefficients in Frac(R) that divides f(x) in
Frac(R)[x]. The ‘denominators’ of the coefficients of g(x) can be ‘cleared’ by
multiplying the polynomial g(x) by some non-zero element a of R so that the
coefficients of the resulting polynomial ag(x) belong to R. There then exists
an element c of R and a primitive polynomial h(x) with coefficients in R such
that ag(x) = ch(x) (Lemma 2.26). The primitive polynomial h(x) divides
af(x) in the polynomial ring R[x]. It follows from Lemma 2.28 that h(x)
divides f(x) in R[x]. (Note that this result follows from a straightforward
application of Lemma 2.27, which generalizes Gauss’s Lemma to polynomials
with coefficients in any unique factorization domain.) But f(x) cannot be
factored as a product of polynomials of lower degree with coefficients in R.
Therefore either deg h = deg f or deg h = 0. But g(x) = (c/a)h(x). It follows
that either g(x) is a ‘constant’ polynomial of degree zero or else g(x) = ρf(x)
for some ρ ∈ Frac(R). Thus f(x) is irreducible over the field Frac(R), as
required.

2.14 Requirements for Unique Factorization Of Ideals

Every non-zero proper ideal of a principal ideal domain factors uniquely as
a product of maximal ideals. There are integral domains with this property
that are not principal ideal domains. Such integral domains are known as
Dedekind domains.

Definition A Dedekind domain (or Dedekind ring) is a unital commutative
ring R satisfying the following four properties:—
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(i) R is an integral domain;

(ii) every ideal of R is finitely generated;

(iii) R is integrally closed;

(iv) every non-zero prime ideal of R is maximal.

It can be shown that an integral domain is a Dedekind domain if and
only if every non-zero proper ideal of the domain factors as a product of
maximal ideals. Such a factorization of a non-zero proper ideal as a product
of maximal ideals is necessarily unique up to the order of the factors.

An algebraic number field is a subfield of the field of complex numbers
that is a finite-dimensional vector space over the field of rational numbers.
An algebraic integer is a complex number that is the root of some monic
polynomial with integer coefficients. The set of algebraic integers within
any algebraic number field is an integral domain, and this integral domain
is a Dedekind domain. Therefore any non-zero proper ideal of the ring of
algebraic integers in any algebraic number field can be factorized uniquely
as a product of maximal ideals. This fact was established by the work of
Kummer and Dedekind in the nineteenth century.

An integral domain is said to be a Noetherian domain if every ideal of the
domain is finitely generated. Principal ideal domains and Dedekind domains
are Noetherian domains. It follows from these definitions that an integral do-
main is a Dedekind domain if and only if it is an integrally closed Noetherian
domain with the property that every non-zero prime ideal is maximal.
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