
Pure and Applied Mathematics Quarterly

Volume 6, Number 3

(Special Issue: In honor of

Joseph J. Kohn, Part 1 of 2 )

725—753, 2010

On Levi-flat Hypersurfaces with Prescribed Boundary

Pierre Dolbeault, Giuseppe Tomassini and Dmitri Zaitsev

Dedicated to Professor J.J.Kohn on the occasion of his 75th birthday

Abstract: We address the problem of existence and uniqueness of a Levi-
flat hypersurface M in Cn with prescribed compact boundary S for n ≥ 3.
The situation for n ≥ 3 differs sharply from the well studied case n = 2. We
first establish necessary conditions on S at both complex and CR points,
needed for the existence of M . All CR points have to be nonminimal and
all complex points have to be “flat”. Then, adding a positivity condition at
complex points, which is similar to the ellipticity for n = 2 and excluding
the possibility of S to contain complex (n − 2)-dimensional submanifolds,
we obtain a solution M to the above problem as a projection of a possibly
singular Levi-flat hypersurface in R × Cn. It turns out that S has to be a
topological sphere with two complex points and with compact CR orbits,
also topological spheres, serving as boundaries of the (possibly singular)
complex leaves of M . There are no more global assumptions on S like being
contained in the boundary of a strongly pseudoconvex domain, as it was in
case n = 2. Furthermore, we show in our situation that any other Levi-flat
hypersurface with boundary S must coincide with the constructed solution.
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1. Introduction

Let S be a smooth 2-codimensional real submanifold of Cn, n ≥ 2. The problem
of finding a Levi-flat hypersurface M ⊂ Cn with boundary S has been extensively
studied for n = 2 by the methods of the geometric theory of several complex
variables (cf. [BeG], [BeK], [Sh], [Kr], [ChS], [SlT] and [ShT] for the unbounded
case). The starting point of Bedford and Gaveau [BeG] is the classical theorem of
Bishop on the existence of local 1-parameter families of analytic discs [Bi]. Near
an elliptic complex point p ∈ S, the real surface S\{p} ⊂ C2 is foliated by smooth
compact real curves which bound analytic discs in C2. The family of these discs
fills a smooth Levi-flat hypersurface. Assume that S is contained in a strictly
pseudoconvex compact hypersurface, and it is the graph of a smooth function g

on the sphere S2 ⊂ C × R with only two complex points that are both elliptic.
Then in [BeG] it is proved that the families of analytic discs near complex points
extend to one global family filling a topological 3-dimensional ball M bounded
by S. Moreover, M is the hull of holomorphy of S. The more general case, when
S is contained in the boundary of a bounded strictly pseudoconvex domain of a
2-dimensional Stein manifold have been studied in [BeK] and [Kr].

In this paper we address the corresponding problem of finding Levi-flat hy-
persurfaces with prescribed compact boundary in Cn for n > 2. The situation
here turns out to be totally different from what it is in C2. The first difference is
already visible from the elementary observation that a submanifold of real codi-
mension 2 in general position is totally real in C2 but no more such in Cn with
n > 2. Furthermore, if a surface S ⊂ C2 is real-analytic, any real-analytic foli-
ation of S by real curves extends locally to a foliation of C2 by complex curves
and hence S locally bounds many possible Levi-flat hypersurfaces. On the other
hand, in higher dimension, a real-analytic submanifold S ⊂ Cn of codimension
2 in general position does not even locally bound a Levi-flat hypersurface M .
Indeed, locally S is the graph of a smooth function g over a real hypersurface in
Cn−1, so the existence of a local Levi-flat graph extending S amounts to solving
a boundary problem for a system of (quasi-linear, elliptic degenerate) operators
and this requires nontrivial compatibility conditions for g. In other words, the
problem we are dealing with becomes overdetermined.
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In Section 2 we study the necessary local compatibility conditions needed for
a 2-codimensional smooth real submanifold S ⊂ Cn to bound a Levi-flat hyper-
surface at least locally. First we observe that near a CR point S must be nowhere
minimal (in the sense of Tumanov [Tu], see §2.1), i.e. all local CR orbits must
be of positive codimension. Next we consider a complex point p ∈ S and local
holomorphic coordinates (z, w) ∈ Cn−1×C, vanishing at p, such that S is locally
given by the equation

(1) w = Q(z) + O(|z|3),

where Q(z) is a complex valued quadratic form in the real coordinates (Re z, Im z) ∈
Rn−1 × Rn−1 or, equivalently, in (z, z̄). We observe that not all quadratic forms
Q can appear when S bounds a Levi-flat hypersurface. In fact, Q has to satisfy
a certain flatness condition, in which case we call p “flat”. We further call a flat
point p ∈ S “elliptic” if Q(z) ∈ R+ for every z 6= 0 in suitable coordinates (cf.
Definition 2.5). Elliptic flat complex points are always isolated (see Remark 2.8).

In our main result, we take these local necessary conditions as our assumptions
and obtain a global conclusion. There are no more global assumptions on S (like
being contained in the boundary of a strongly pseudoconvex domain) as it was
the case in C2. Each of our assumptions can be checked in a neighborhood of
a point and is therefore purely local. There is a technical difficulty, however,
that the possible Levi-flat hypersurface solving the boundary problem may have
self-intersections producing singularities even along large sets. We illustrate this
phenomenon by the following example:

Example 1.1. Let S2n−2 ⊂ Cn−1 × R ∼= R2n−1 be the unit sphere and consider
an immersion γ : [−1, 1] → C with γ(x) 6= γ(−x) for all x 6= 0. Then it is
easy to see that the image S ⊂ Cn of S2n−2 under the map id × γ : Cn−1 × R →
Cn−1×C is a submanifold of codimension 2 that locally bounds an immersed Levi-
flat hypersurface obtained as the image under the same map of the unit ball B2n−1

bounded by S2n−2 in Cn. However, the image of the ball itself can be singular at
points (z, γ(x)) if there exist points x′ 6= x with γ(x) = γ(x′). Clearly the set of
such points can be very large.

In view of this example we have to allow more general Levi-flat “hypersurfaces”
that are obtained as images of real manifolds. Furthermore, the complex leaves
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themselves may have singularities away from their boundaries. Hence we are led
to the following real analogue of complex-analytic varieties (cf. [HaL1]):

Definition 1.2. A closed subset M in a domain Ω ⊂ Cn is said to be a d-
subvariety (with negligible singularities) if it is of locally finite Hausdorff d-
dimensional measure and there exists a closed subset σ of M of d-dimensional
Hausdorff measure zero such that M \σ is an oriented smooth real d-dimensional
submanifold. The minimal set σ with this property is called the singular set
Sing M and its complement in M the regular set Reg M . M is said to be Levi-flat
if Reg M is a Levi-flat CR submanifold in the usual sense (cf. Section 2).

Finally, we add a local assumption on S guaranteeing that all the CR orbits
have the same dimension and hence define a smooth foliation away from the
complex points. We have:

Theorem 1.3. Let S ⊂ Cn, n > 2, be a compact connected smooth real 2-
codimensional submanifold such that the following holds:

(i) S is nonminimal at every CR point;
(ii) every complex point of S is flat and elliptic and there exists at least one

such point;
(iii) S does not contain complex submanifolds of dimension n− 2.

Then S is a topological sphere with two complex points and there exist a smooth
submanifold S̃ and a Levi-flat (2n−1)-subvariety M̃ in R×Cn (i.e. M̃ is Levi-flat
in C×Cn), both contained in [0, 1]×Cn, such that S̃ = dM̃ in the sense of currents
and the natural projection π : [0, 1] × Cn → Cn restricts to a diffeomorphism
between S̃ and S.

As mentioned before, (i) and the flatness in (ii) are necessary for S to locally
bound a Levi-flat hypersurface. The condition (iii) may appear artificial at a first
glance. However, J. Lebl [L07] has constructed an example of a generic nowhere
minimal real-analytic submanifold of codimension 2 in C3 that does not satisfy
(iii) and that locally does not bound any smooth Levi-flat hypersurface.

In addition, we obtain the following more precise information:

Theorem 1.4. The Levi-flat (2n−1)-subvariety M̃ in Theorem 1.3 can be chosen
with the following properties:
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(i) S̃ has two complex points p0 and p1 with S̃ ∩ ({j} × Cn) = {pj} for j =
0, 1; every other slice {x} × Cn with x ∈ (0, 1), intersects S̃ transversally
along a submanifold diffeomorphic to a sphere that bounds (in the sense of
currents) the (possibly singular) irreducible complex-analytic hypersurface
(M̃ \ S̃) ∩ ({x} × Cn);

(ii) the singular set Sing M̃ is the union of S̃ and a closed subset of M̃ \ S̃ of
Hausdorff dimension at most 2n− 3; moreover, each slice (Sing M̃ \ S̃)∩
({x} × Cn) is of Hausdorff dimension at most 2n− 4;

(iii) there exists a closed subset Ã ⊂ S̃ of Hausdorff (2n − 2)-dimensional
measure zero such that. away from Ã, M̃ is a smooth submanifold with
boundary S̃ near S̃; moreover Ã can be chosen such that each slice Ã ∩
({x} × Cn) is of Hausdorff (2n− 3)-dimensional measure zero.

Finally, we obtain the following uniqueness result:

Theorem 1.5. Let S, S̃ and M̃ satisfy the conclusions of Theorems 1.3 and
1.4. Suppose that M ⊂ Cn is another Levi-flat (2n− 1)-subvariety such that the
following holds:

(i) the singular set of M is the union of S and a closed subset of M \ S of
Hausdorff dimension at most 2n− 3;

(ii) through every point in M \ S there is a complex-analytic subset of M of
positive dimension;

(iii) there exists a closed subset A ⊂ S of Hausdorff dimension at most 2n− 3
such that, away from A, M is a manifold with boundary S near S and
such that for every leaf L ⊂ Reg M one has L ∩ S 6⊂ A.

Then M coincides with the image π(M̃).

Here by a leaf in the Levi-flat hypersurface Reg M we mean a maximal image of
an injective holomorphic immersion of a connected complex (n− 1)-dimensional
manifold.

The first main step of the proof, given in Section 2 and 3, consists of proving
the following:

Proposition 1.6. Under the assumptions of Theorem 1.3, S is diffeomorphic to
the unit sphere S2n−2 ⊂ Cn−1

z × Rx; there are precisely two complex points of S
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corresponding to the poles {x = ±1}; the CR orbits of S away from the poles
correspond to the spheres {x = const}.

This result allows us to solve the boundary problem mentioned above by ap-
plying a theorem of Harvey-Lawson [HaL1] leaf-wise for single CR orbits. Thus,
we are led to prove the version of the latter theorem with smooth parameters
(cf. Theorem 4.1) which also extends results of [Do1] from the real-analytic to
the smooth case (cf. [Do1, Théorème 6.9]). Next we prove that the CR orbits
can be represented as the level surfaces of a smooth function ν having a smooth
extension to the complex points. Consequently, the graph N of ν is a subman-
ifold of the real hyperplane E := Rx × Cn of C × Cn. Moreover the CR orbits
are sent by ν × id into the hyperplane sections N ∩ {x = const}. Then we shall
derive from Theorem 4.1 that there exists a unique Levi-flat (2n− 1)-subvariety
M̃ ⊂ E, foliated by complex (n− 1)-subvarieties, such that dM̃ = N in the sense
of currents, leading to the conclusion of Theorem 1.3.

In conclusion, we mention another related problem, suggested by Gaveau (cf.
[Ga]), of finding the Levi-degenerate hypersurfaces with prescribed boundary
(instead of the Levi-flat ones). In this context the boundary problem was studied
in [SlT].

Some results of this paper have been announced in [DTZ].

Acknowledgments. From P. D. to G. Henkin for conversations at the be-
ginning of this work. From P. D. and G. T. to the European networks ”Analyse
Complexe et Géométrie Analytique” for support. From D. Z. for hospitality of
the Scuola Normale Superiore during his stay in Pisa.

2. Local analysis and flatness conditions.

We recall some definitions and fix the notation. Let M be a smooth, connected,
real submanifold of Cn, n ≥ 2, of real dimension m. For every p ∈ M we denote
Hp(M) = Tp(M) ∩ iTp(M) the complex tangent space of M at p and HM the
fiber bundle ∪p∈MHp(M). dimCR Mp := dimC HpM is called the CR dimension
of M at p, codimCR Mp := m − 2dimC HpM the CR codimension. M is said to
be a CR manifold if dimC HpM is constant. In this case dimCRM := dimC HpM

is, by definition, the CR dimension of M , and codimCR M := m− 2dimCRM the
CR codimension. The CR dimension satisfies m − n ≤ dimCR M ≤ m/2. A CR
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submanifold M ⊂ Cn of CR dimension m−n (i.e. such that TpM + iTpM = Cn)
is called generic. A CR submanifold M ⊂ Cn is called maximally complex if
m = 2dimCRM + 1. Finally we recall that a CR submanifold M is said to be
minimal (in the sense of Tumanov [Tu]) at a point p if there does not exist a
submanifold N of M of lower dimension through p such that HN = HM |N . In
the general case, by a theorem of Sussman (and a theorem of Nagano in the real-
analytic case), all possible submanifolds N with this property contain, as germs
at p, one of the minimal possible dimension, called a (local) CR orbit of p in M

(cf. e.g. [BER]). The germ at p of the CR orbit of p is uniquely determined. In
particular, M is minimal at p if and only if a CR orbit of p is open and hence,
of the maximal possible dimension. On the other hand, the minimal possible
dimension of a CR orbit is dimRHpM = 2l which is twice the CR dimension of
M . It is easy to see that all CR orbits in M have their dimension equal to 2l if
and only if M is Levi-flat i.e. the Levi form of M identically vanishes.

2.1. Behaviour near CR points. Let S be a smooth real submanifold of real
codimension 2 in Cn (not necessarily compact). We say that S is a locally flat
boundary at a point p ∈ S if there exist an open neighbourhood U of p in Cn

and a Levi-flat hypersurface M ⊂ U with boundary U ∩ S. Assume that S is
a locally flat boundary and let p ∈ S be such that S is CR near p. Then, near
p, S is either a complex hypersurface (in which case it is clearly a locally flat
boundary) or a generic submanifold of Cn at least at some points. In the second
case being a locally flat boundary turns out to be a nontrivial condition for n ≥ 3.
Indeed, suppose that M ⊂ Cn is a Levi-flat hypersurface bounded by a generic
submanifold S. Consider the foliation by complex hypersurfaces of M where it
extends smoothly to the boundary. Since the boundary S is generic, it cannot
be tangent to a complex leaf. Hence the leaf Mp of M through p intersects S

transversally along a real hypersurface Sp ⊂ S. Since HqS ⊂ HqM = TqMp for
q ∈ Sp near p, it follows that HqSp = HqS for such q. Hence S cannot be minimal
at p with p being arbitrary generic smooth boundary point. In fact, it follows
that Sp is either a single CR orbit of S or a union of CR orbits.

In case n = 2, S is totally real (i.e. HS = {0}) in its CR points and hence is
obviously nowhere minimal. However, for n ≥ 3, S cannot be totally real for rea-
sons of dimension and its “nowhere minimality” becomes a nontrivial condition.
(Recall the standard fact that a general CR submanifold can always be locally
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perturbed to a Levi-nondegenerate one and hence to a minimal one but not vice
versa).

If all CR orbits of S are 1-codimensional, they can be locally graphed over
minimal real hypersurfaces in Cn−1. As a consequence of the extension theorems
of Trépreau and Tumanov [Tr, Tu] (more precisely, of their parametric versions)
we obtain that the condition of nowhere minimality is sufficient for S to be a
locally flat boundary. On the other hand, if all CR orbits of S are 2-codimensional
and hence are complex submanifolds, then S is Levi-flat and is clearly a locally
flat boundary. In view of the condition (iii) in Theorem 1.3, the latter situation
does not occur in our case.

2.2. Complex points and their fundamental forms. We now study the be-
haviour of a 2-codimensional submanifold S ⊂ Cn near a complex point p ∈ S,
i.e. p is such that TpS is a complex hyperplane in TpCn. In suitable holomorphic
coordinates (z, w) ∈ Cn−1 × C vanishing at p, S is locally given by an equation

(2) w = Q(z) + O(|z|3), Q(z) =
∑

1≤i,j≤n−1

(aijzizj + bijzizj + cijzizj),

where (aij) and (cij) are symmetric complex matrices and (bij) is an arbitrary
complex matrix. The form Q(z) can be seen as a “fundamental form” of S at p,
however it is not uniquely determined (even as a tensor). In fact, a holomorphic
quadratic change of coordinates of the form (z, w) 7→ (z, w +

∑
a′ijzizj) results

in adding (a′ij) to the matrix (aij). On the other hand, it can be easily seen that
the matrices (bij) and (cij) transform as tensors TpS × TpS → TpCn/TpS under
all biholomorphic changes of (z, w) preserving the form in (2).

2.3. A necessary condition at complex points. Clearly any symmetric C-
valued R-bilinear form Q on C2 can appear in the equation (2). However we shall
see that the condition on S to be a locally flat boundary at p implies a nontrivial
condition on Q.

Definition 2.1. We call S flat at a complex point p ∈ S if, in some (and hence
in any) coordinates (z, w) as in (2), the term

∑
bijzizj takes values in some real

line in C, i.e. there exists a complex number λ ∈ C such that
∑

bijzizj ∈ λR for
all z = (z1, . . . , zn−1).
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Example 2.2. If (bij) is a Hermitian matrix, S as above is automatically flat
at p. Also in case n = 2 the flatness always holds. On the other hand, any
submanifold S ⊂ C3

z1,z2,w given by w = |z1|2 + i|z2|2 + O(|z|3) is not flat at 0.

We have the following property:

Lemma 2.3. Let S ⊂ Cn be a locally flat boundary with complex point p ∈ S.
Then S is flat at p.

Proof. Suppose first that S is contained in a Levi-flat hypersurface M . If M is
real-analytic, we can choose local holomorphic coordinates (z, w) such that M is
the hyperplane Im w = 0. Since S ⊂ M , it follows from (2) that Q(z) ∈ R for
all z. Then Q(z) + Q(iz) ∈ R which implies, in view of Definition 2.1, that S

is flat at p. If M is merely smooth, it can be approximated by a real-analytic
hyperplane up to order 3 at p which is enough to conclude the flatness at p, as
claimed. Finally, the general case, when S bounds a Levi-flat hypersurface M , is
reduced to the previous ones because S can be approximated in the C2 topology
by a submanifold S̃ ⊂ M with a complex point. ¤

If S is flat, by making a change of coordinates (z, w) 7→ (z, λw), it is easy to
make

∑
bijzizj ∈ R for all z. Furthermore, by a change of coordinates (z, w) 7→

(z, w +
∑

a′ijzizj) we can choose the holomorphic term in (2) to be the conjugate
of the antiholomorphic one and so make the whole form Q real-valued. Hence we
can transform Q to the following normal form:

Definition 2.4. We say that S is in a flat normal form at p if the coordinates
(z, w) as in (2) are chosen such that Q(z) ∈ R for all z ∈ Cn−1.

If the matrix (bij) is nonzero, it follows from the discussion above that in a flat
normal form, Q(z) is uniquely determined as a tensor TpS × TpS → TpCn/TpS.

2.4. Elliptic flat points. We now assume the above necessary conditions for S

in order to be a locally flat boundary. That is, we assume that S is nonminimal
in its generic points and flat at its complex points. We then prove that S is a
locally flat boundary near p assuming in addition a certain positivity (ellipticity)
condition. The latter condition is analogous to that for 2-surfaces in C2.
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Definition 2.5. Let p ∈ S be a flat point. We say that p is elliptic if, in some
(and hence in any) flat normal form, the real quadratic form Q(z) is positive or
negative definite.

By adding Q(z) and Q(iz) we see that ellipticity implies that the matrix (bij)
is positive definite.

Remark 2.6. Definition 2.5 generalizes the well-known notion of ellipticity (in
the sense of Bishop) for n = 2. Note that S ⊂ C2 is always flat (in the sense
of Definition 2.1) at any complex point. In general, it can be shown that S is
elliptic at a flat complex point p if and only if every intersection L ∩ S with a
complex 2-plane L through p satisfying L 6⊂ TpS is elliptic in L ∼= C2 in the sense
of Bishop.

2.5. Quadrics with elliptic flat points. The simplest example of S is the
quadric of C3:

(3) w = Q(z),

where Q is as in (2). In our case when S is flat and elliptic at p = 0, we can
choose the coordinates (z, w) where Q(z) is real and positive definite. We have
the following elementary properties whose proof is left to the reader:

Lemma 2.7. Suppose that the quadric (3) is flat and elliptic at 0. Then it is CR
and nowhere minimal outside 0, and the CR orbits are precisely the 3-dimensional
ellipsoids given by w = const. The Levi form at the CR points is positive definite.

Remark 2.8. In particular, it follows that elliptic flat points are always isolated
complex points. This property also holds for general 2-codimensional submani-
folds S ⊂ Cn as can be seen by comparing S with a corresponding approximating
quadric.

2.6. Nowhere minimal surfaces with elliptic flat points. For elliptic flat
points, we now show that the above necessary conditions are in some sense suffi-
cient for S to be a locally flat boundary.

Proposition 2.9. Assume that S ⊂ Cn (n ≥ 3) is nowhere minimal at all its CR
points and has an elliptic flat complex point p. Then there exists a neighbourhood
V of p such that V \ {p} is foliated by compact real (2n − 3)-dimensional CR
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orbits and there exists a smooth function ν without critical points away from p,
having the CR orbits as its level surfaces.

Proof. We may assume that S is given by w = ϕ(z) with p = 0 and ϕ(z) =
Q(z) + O(|z|3) as in (2). Denote by S0 the corresponding quadric (3) for n ≥ 3.
By differentiating (2) we obtain for the tangent spaces the following asymptotics:

(4) T(z,ϕ(z))S = T(z,Q(z))S0 + O(|z|2), z ∈ Cn−1,

where the tangent spaces are understood as elements of the Grassmannian of all
2-codimensional real vector subspaces of R2n. Here both T(z,ϕ(z))S and T(z,Q(z))S0

depend continuously on z near the origin. Hence the choice of coordinates in the
corresponding Grassmannian plays no role in (4). However, the corresponding
complex tangent spaces change their dimension at the origin and have there no
limit in the Grassmannian of all 2-codimensional complex vector subspaces of Cn.
Hence, some care is needed to choose suitable coordinates. To do this, consider
the unit ellipsoid G := {z ∈ Cn−1 : Q(z) = 1} and the projection

π : Cn \ {z = 0} → G, (z, w) 7→ z/
√

Q(z).

Then, for every z ∈ G, consider a real orthonormal basis e1(z), . . . , e2n(z) (with
respect to the standard Euclidean product) such that

(5) e1(z), . . . , e2n−4(z) ∈ HzG, e2n−3(z) ∈ TzG.

Locally such a basis can be chosen continuously depending on z. For every (z, w),
z 6= 0, consider coordinate charts in the Grassmannians of all vector subspaces of
Tz,wCn given by the basis e1(π(z, w)), . . . , e2n(π(z, w)). Then every vector sub-
space in such a chart is represented by a matrix of suitable size. In particular, in
view of (5), the spaces T(z,Q(z))S0 and H(z,Q(z))S0 for z 6= 0 are represented by
the corresponding zero matrices. A direct calculation using (4) shows that, in the
chosen coordinates,

(6) H(z,ϕ(z))S = H(z,Q(z))S0 + O(|z|2), z 6= 0, z → 0.

In particular, S is CR outside the origin. The next calculation of the Lie brackets
of unit vector fields in HS0 and HS shows that the Levi forms L(S0) and L(S)
are related by

(7) L(S)(z,ϕ(z)) = L(S0)(z,Q(z)) + O(|z|), z 6= 0, z → 0.
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Taking into account that L(S0)(λz,Q(λz)) = 1
λL(S0)(z,Q(z)) and normalizing the

Levi form appropriately, we obtain, for the normalized Levi forms,

(8)
L(S)(z,ϕ(z))

|L(S)(z,ϕ(z))|
=

L(S0)(z,Q(z))

|L(S0)(z,Q(z))|
+ O(|z|2), z 6= 0, z → 0.

In particular the Levi-form of S is nonzero at CR points near 0.

Denote by E(q), q ∈ S \ {0}, the tangent spaces to the local CR orbit of S

through q. Since S is nowhere minimal and the Levi form is everywhere nonzero at
CR points, the space E(q), of real dimension 2n− 3, is spanned by the complex
tangent space HqS and the Levi form at q. Denoting by E0(q), q ∈ S0, the
analogous object for S0 and using the above asymptotics we obtain

(9) E((z, ϕ(z))) = E0((z,Q(z))) + O(|z|2), z 6= 0, z → 0.

We now show that CR orbits of S have a transversality property with respect
to the radial lines. By Lemma 2.7, the CR orbits of S0 are the ellipsoids given
by w = const, i.e. in view of (3), by Q(z) = c, w = c, for c ∈ R+. In particular,
dπ projects each E0(q), q ∈ S0 \ {0}, bijectively onto Tπ(q)G. We now conclude
from (9) that the same property holds near the origin also when S0 is replaced
by S and E0 by E. This is the crucial observation. It implies that the restriction
of π to each (local) CR orbit of S (in a suitable neighbourhood of the origin) is
a local diffeomorphism.

Using the above observation we can now define global CR orbits. We start with
a point q ∈ S \{0} and extend the local inverse of the restriction of π to the local
CR orbit of q in S along paths on G.

We claim that the extension is always possible if the length of the path is
bounded by a fixed constant and the starting point q is sufficiently close to 0
(depending on the constant). Indeed, given the spaces E0 and E, the CR orbits
are obtained by solving ODEs along the paths. We can regard z = (z1, . . . , zn−1)
as coordinates on both S0 and S and thus identify them locally with Cn by
projecting to z-component. In case of S0, both CR orbits and ODEs are invariant
under scaling z 7→ λz, λ ∈ R. On the other hand, (9) implies that the scaled
ODEs for S become arbitrarily close to those for S provided |z| is sufficiently
small. Since CR orbits of S0 are the ellipsoids Q(z) = const, the claim follows
from continuous dependence of ODE solutions under perturbations.
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Clearly there exists a constant C > 0 such that we can reach any point of G

by a path of a length not exceeding C and such that any two such paths are
homotopic within paths of length not exceeding C > 0 (note that the ellipsoid G

is simply-connected for n ≥ 3). It follows that any two extensions of a CR orbit
along two paths as above coincide. Hence, for every q ∈ S sufficiently close to 0,
we obtain a global compact CR orbit Sq through q that projects diffeomorphically
onto G via π.

In order to obtain a function ν as desired, consider a smooth curve γ : [0, ε) → S

with γ(0) = p that is diffeomorphic onto its image. Define ν = γ−1 on the image
of γ. Then it follows from the above description that every CR orbit sufficiently
close to p intersects γ([0, ε)) at precisely one point. Hence there is a unique
extension of ν from γ([0, ε)) to a neighbourhood of p having CR orbits as its level
surfaces. Obviously, ν is smooth away from p. Furthermore, differentiating (9) and
taking into account the properties of E0((z,Q(z))), we conclude that directional
derivatives of E((z, ϕ(z))) along the unit vectors are O(1/|z|). Since the diameter
of the orbit Sq is O(|z|), we obtain that the derivative of ν near the origin is
bounded. Hence ν is Lipschitz up to the origin. Furthermore, it follows from the
construction that all higher order derivatives of ν are O(1/|z|m) for suitable m

(depending on the derivative). Therefore replacing ν by e−1/ν , we may assume
that ν is smooth also across p. ¤

Remark 2.10. In the setting of Proposition 2.9 one can construct a complex
hypersurface Mq ⊂ Cn whose boundary is a global CR orbit Sq in S for q ∈ S

sufficiently close to the origin. Indeed Sq can be regarded as the graph of a
CR function f over its projection S̃q ⊂ Cn−1

z . Then the graph of the unique
holomorphic extension of f to the interior of S̃q defines such a hypersurface
Mq. Both Sq and Mq are trivially projections of S̃q := {ν(q)} × Sq and M̃q :=
{ν(q)} × Mq under π : R × Cn → Cn. If Sq is varying over all CR orbits near
the origin, the family of complex hypersurfaces M̃q fills a Levi-flat hypersurface
M̃ ⊂ R × Cn with boundary S̃ being the union of all S̃q and we obtain the
conclusion of Theorem 1.3 near the given complex point p.

3. Global consequences of the local flatness.

We now consider a compact real 2-codimensional submanifold S of a complex
manifold X of dimension n ≥ 3.
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3.1. Induced foliation by CR orbits. We use classical topological tools to
obtain a description of the global structure of the foliation by CR orbits.

Proposition 3.1. Let S ⊂ X be a compact connected real 2-codimensional sub-
manifold such that the following holds:

(i) S is nonminimal at every CR point;
(ii) every complex point of S is flat and elliptic and there exists at least one

such point;
(iii) S does not contain complex manifold of dimension (n− 2).

Then S is diffeomorphic to the unit sphere S2n−2 ⊂ Cn−1
z × Rx such that the

complex points are the poles {x = ±1} and the CR orbits in S correspond to the
(2n − 3)-spheres given by x = const. In particular, if Sell denotes the set of all
elliptic flat complex points of S, the open subset S0 = S \ Sell carries a foliation
F of class C∞ with 1-codimensional compact leaves.

Proof. From conditions (i) and (ii), S satisfies the hypotheses of Proposition 2.8.
It follows from the proof of Proposition 2.9 that near an elliptic flat point, all
CR orbits are diffeomorphic to a real ellipsoid in R2n−2 (and hence to the sphere
S2n−3). Furthermore, the assumption (iii) guarantees that all CR orbits in S

must be of real dimension 2n− 3. Hence, by removing small connected saturated
neighbourhoods of all complex points (since they are isolated, there are finitely
many of them), we obtain a compact manifold S0 with boundary with the given
foliation of codimension 1 by its CR orbits whose first cohomology group with
values in R is 0.

We now assume for a moment that this foliation is transversely oriented (see
e.g. [CaC] for this and other terminology related to foliations). Then we can
apply Reeb-Thurston Stability Theorem ([R, Th] and [CaC, Theorem 6.2.1]) to
conclude that S0 is diffeomorphic to S2n−3 × [0, 1] with CR orbits being of the
form S2n−3 × {x} for x ∈ [0, 1]. Then the full manifold S is diffeomorphic to the
sphere S2n−2 as required.

If S0 with the foliation is not transversely oriented, we reach a contradiction as
follows. Consider its transversely oriented 2 : 1 covering S̃0. Since the boundary
leaves are simply connected and hence have trivial holonomies, S̃0 has twice as
many boundary leaves as S0. As above, S̃0 is diffeomorphic to S2n−3 × [0, 1]. By
continuity, each leaf S2n−3 × {x} of S̃0 projects diffeomorphically onto a leaf of
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S0. Hence the base [0, 1] admits a 2 : 1 covering over a 1-dimensional manifold
which is impossible. ¤

3.2. Boundary value problem for embedded surfaces. We now return to
our central question: When does a compact submanifold S of Cn bound a Levi-flat
hypersurface M? From Proposition 3.1, we know that every CR orbit of S is a
connected compact maximally complex CR submanifold of Cn, n ≥ 3, and hence,
in view of the classical result of Harvey-Lawson [HaL], bounds a complex-analytic
subvariety. Thus, in order to find M , at least as a real “subvariety”, foliated by
complex subvarieties, a natural way to proceed is to build it as a family of the
solutions of the boundary problems for individual CR orbits. To do it, we reduce
the problem to the corresponding problem in a real hyperplane of Cn+1. The
latter case is treated in the next section. It is inspired by the proof given in [Do1]
for the Cω case.

4. On boundaries of families of holomorphic chains with C∞

parameters.

As in [Do1] we follow the method of Harvey-Lawson [HaL] in [Ha, Section 3].

4.1. Subvarieties with negligible singularities. Here we recall the terminol-
ogy introduced in Definition 1.2 with somewhat more details. Let X be a complex
manifold endowed with a Hermitian metric. Let Hd be the d-dimensional Haus-
dorff measure on X. A closed subset Y of X is said to be a d-subvariety (with
negligible singularities) of class Ck, k ∈ N∪{∞, ω}, if there exists a closed subset
σ of Y such that Hd(σ) = 0 and Y \σ is a closed, oriented d-dimensional subman-
ifold of class Ck of X \ σ having locally (with respect to X) finite Hd-measure.
The minimal set σ as above is called the singular set Sing Y of Y (also called the
scar set by Harvey-Lawson [Ha], [HaL1]) and Reg Y = Y \ σ its regular part. By
integration on Reg Y , we define a measurable, locally rectifiable current on X,
which is denoted by [Y ] and said to be the integration current of Y . The closed
set σ may be increased without changing [Y ]. The current [Y ] is said to be closed
or to be a cycle if d[Y ] = 0. Obviously a change of the metric does not change
the class of d-subvarieties as well as their regular and singular parts.

A d-subvariety Y with negligible singularities (and the current [Y ]) is said to be
CR of CR dimension h if there exists a closed subset σ′ with σ ⊂ σ′ ⊂ Y such that
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Hd(σ′) = 0 and Y \σ′ is a CR submanifold of CR dimension h. In particular, Y is
said to be maximally complex or of hypersurface type if d = 2h + 1 where h is the
CR dimension of Y ; it is said to be holomorphic if it is a complex analytic variety.
A CR d-subvariety Y of CR dimension h is said to be Levi-flat if the regular part
Reg Y is Levi-flat, or equivalently, if Reg Y is foliated (in the usual sense) by
complex h-dimensional submanifolds. Furthermore, Y is said to be foliated by
holomorphic h-varieties, if through every point in Y (including those of Sing Y )
there is a complex h-dimensional subvariety in Y .

More generally, we call d-chain of X every locally finite linear combination,
with coefficients in Z of integration currents [Wj ] on d-subvarieties Wj with neg-
ligible singularities. In particular, if the Wj are complex subvarieties, the chain
is said to be holomorphic.

4.2. Boundary problem in a real hyperplane of Cn.

4.2.1. Here we extend to the C∞ case the Cω solution of the boundary problem
for a Cω Levi-flat subvariety in a real hyperplane of Cn [Do1]. Let n ≥ 4. We
shall use the following notation:

z′′ = (z2, . . . , zn−1) ∈ Cn−2, ζ ′ = (x1, z
′′) ∈ R× Cn−2.

Let E = R×Cn−1 = {y1 = 0} ⊂ Cn = C×Cn−1, and k : E → Rx1 , (x1; z′′; zn) 7→
x1. For x0

1 ∈ Rx1 , set Ex0
1

= k−1(x0
1) = {x1 = x0

1}.

4.2.2. Let N ⊂ E be a compact, (oriented) CR subvariety of Cn of real dimension
2n−4 and CR dimension n−3, (n ≥ 4), of class C∞, with negligible singularities
(i.e. there exists a closed subset τ ⊂ N of (2n−4)-dimensional Hausdorff measure
0 such that N \ τ is a CR submanifold). Let τ ′ be the set of all points z ∈ N

such that either z ∈ τ or z ∈ N \ τ and N is not transversal to the complex
hyperplane k−1(k(z)) at z. Assume that N , as a current of integration, is d-closed
and satisfies:

(H) there exists a closed subset L ⊂ Rx1 with H1(L) = 0 such that for every
x ∈ k(N) \ L, the fiber k−1(x) ∩N is connected and does not intersect τ ′.
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4.2.3. We are going to prove the following:

Theorem 4.1. Let N satisfy (H) with L chosen accordingly. Then, there exists
in E′ = E \ k−1(L) a unique C∞ Levi-flat (2n− 3)-subvariety M with negligible
singularities in E′\N , foliated by complex (n−2)-subvarieties, with the properties
that M simply (or trivially) extends to E′ by a (2n−3)-current (still denoted M)
such that dM = N in E′. The leaves are the sections by the hyperplanes Ex0

1
,

x0
1 ∈ k(N) \L, and are the solutions of the “Harvey-Lawson problem” for finding

a holomorphic subvariety in Ex0
1

∼= Cn−1 with prescribed boundary N ∩ Ex0
1
.

The proof will be given in the course of this section 4.

In what follows we increase τ such that τ = τ ′ with τ ′ as above. Recall that
the simple extension M̃ of the current M in E′ \ N to E′, if it exists, satisfies,
for every ϕ ∈ D(E′), < M̃,ϕ >=< M,ϕ|E′\N >.

In [Do1], [Do2], the statement [Do1, Théorème 6.9] is given for E′ = E, n ≥ 4,
and for N being Cω-smooth, in two particular cases. Here we shall give a proof
for C∞ regularity, using again [Ha], for any N with negligible singularities outside
k−1(L).

To be noted:

1) At the end of the proof, instead of the consideration of special cases as in
[Do1], the technique of Harvey-Lawson [HaL] has been adapted.

2) In Theorem 4.1, the solution is a maximally complex (2n−3)-subvariety M

with negligible singularities and not a general chain as in [Do 1].

4.3. Notations and reminders from [Do 1].

4.3.1. Let

d′′E =
n∑

j=2

∂

∂zj
dzj , d′E =

n∑

j=2

∂

∂zj
dzj .

In the following we choose an arbitrary orthogonal projection π from Cn onto a
complex (n−1)-plane. Given π, after a linear coordinate change, we may assume
that π : Cn → Cn−1, z = (z1, . . . , zn) 7→ (z1, . . . , zn−1), denotes the projection as
well as its restriction to E or E′ (with E′ given in Theorem 4.1). Set E = π(E),
E ′ = π(E′), N = π(N) and N ′ = π(N ∩ E′) = N ∩ E ′.
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Since N is of CR dimension n − 3, it follows: N = N3,1 + N2,2 + N1,3 in Cn,
where N r,s denotes the component of type (bidegree) (r, s). Since N is locally
rectifiable, there exists a locally rectifiable current P of E such that j∗P = N ,
where j : E → Cn is the inclusion. Then

(10) P = P 2,1 + P 1,2 + dx1 ∧ (P 2,0 + P 1,1 + P 0,2),

where the types are relative to (z2, . . . , zn) and dP = 0 (since dN = 0). In
particular, taking the (1, 2) components of dP = 0, we obtain

(11) d′′EP 1,1 + d′EP 0,2 =
∂P 1,2

∂x1
.

4.3.2. As in [Do 1] in E we shall construct a defining function R of our solution
M in E′ in the following way. For ζ ′ ∈ E ′ \N ′, zn ∈ C, consider the Laurent series

(12) ϕ = C0(ζ ′) logzn +
∞∑

m=1

m−1Cm(ζ ′)z−m
n ,

the coefficients Cm being defined as follows. Since dP = 0, we have d′′EP 0,2 = 0.
Let U0,1 be a solution with compact support, of the equation d′′EU0,1 = −P 0,2

(see [Do1, 5.4]). Set

(13) Cm(ζ ′) = KE]π∗[zm
n (P 1,1 + d′EU0,1) ∧ dx1],

where KE = δ0(z′′)⊗H(x1)
∂

∂x1
with H(x1) being the Heaviside function in x1,

and K]u is the convolution-contraction of a vector field K =
∑

Kj
∂

∂zj
+

∑
Kj̄

∂
∂z̄j

with distributional coefficients and a current u =
∑

uIJdzI ∧ dz̄J , given by the
formula (cf. [HaL, p. 240] and [Ha, Section 3.6]):

K]u =
∑

(Ki ∗ uIJ) ı ∂
∂zi

(dzI ∧ dz̄J) +
∑

(Kī ∗ uIJ) ı ∂
∂z̄i

(dzI ∧ dz̄J),

where ı is the usual contraction.

Then each Cm(ζ ′) is a (0, 0)-current and by the construction, its restriction to
E ′ \ N ′ is represented by a C∞ function. Furthermore, the series (12) converges
for (ζ ′; zn) ∈ (E ′ \ N ′) × (C \∆) and R(ζ ′; zn) = exp ϕ(ζ ′; zn) is a C∞ function
on (E ′ \ N ′)× (C \∆), where ∆ = ∆(0, ρ) is a suitably large disc.
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4.4. Relation with slices.

Lemma 4.2. Restricting to the hyperplane Ex0
1
⊂ E, for x0

1 ∈ k(N)\L ⊂ Rx0
1
, we

obtain the hypotheses of the boundary problem of Harvey-Lawson in Ex0
1

∼= Cn−1

[Ha].

Moreover, from condition (H), by Harvey-Lawson theorem [Ha, theorem 3.2],
Nx0

1
= k−1(x0

1)∩N bounds an irreducible complex subvariety of Ex0
1
\Nx0

1
up to

sign.

Proof. Consider the slice < Cm(ζ ′), k, x0
1 > of Cm(ζ ′) by the complex hyperplane

k−1(x0
1) (see e.g. [HaL]). From (13) we obtain

d′′ECm(ζ ′) = d′′E
(
KE]π∗[zm

n (P 1,1 + d′EU0,1) ∧ dx1]
)

=

d′′E
(
δ0(z′′)⊗H(x1)

∂

∂x1
]π∗[zm

n (P 1,1 + d′EU0,1) ∧ dx1]
)

= d′′E
((

δ0(z′′)⊗H(x1)
) ∗ (

π∗[zm
n (P 1,1 + d′EU0,1)]

))

=
(
δ0(z′′)⊗H(x1)

) ∗ (
π∗[zm

n d′′E(P 1,1 + d′EU0,1)]
)

As d′′EU0,1 = −P 0,2 by the construction in section 4.3.2, we obtain

d′′E(P 1,1 + d′EU0,1) = d′′EP 1,1 + d′EP 0,2 =
∂P 1,2

∂x1

by (11) and

d′′ECm(ζ ′) =
(
δ0(z′′)⊗ δ0(x1)

)
∗

(
π∗[zm

n P 1,2]
)

= π∗[zm
n P 1,2].

Denoting by d′′0 the d′′ operator in Ex0
1
, we have

d′′0 < Cm(ζ ′), k, x0
1 >= d′′E < Cm(ζ ′), k, x0

1 >=< d′′ECm(ζ ′), k, x0
1 >

=< π∗[zm
n P 1,2], k, x0

1 >,

which is the equation satisfied by the coefficient Cm(ζ ′) of Harvey-Lawson in Ex0
1
,

for N ∩ Ex0
1

[Ha, (3.1)]. By the uniqueness, < Cm(ζ ′), k, x0
1 > is the coefficient

Cm(ζ ′) of Harvey-Lawson in Ex0
1
. ¤

In view of Lemma 4.2 and the properties of Cm’s [HaL, §6], C0(ζ ′) is locally
constant and integer-valued and the function R(ζ ′; zn) has the following proper-
ties:
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(a) let V0 denote the union of the unbounded connected components of E ′\N ′,
then R = 1 on V0 × (C \∆);

(b) R(ζ ′;w) =
∑C0(ζ′)

m=−∞Am(ζ ′)wm, where the series converges uniformly on
compact sets in (E \ N )× (C \∆);

(c) every coefficient Am in (b) is a polynomial in a finite number of Cl.

Furthermore, for each fixed x1, R(x1; ζ ′′; zn) extends to Ex1 ∩ ((E ′ \ N ′) × C)
as a rational function in zn ∈ C with holomorphic coefficients in Ex1 ∩ (E ′ \ N ′).
The divisor of R(x1; ζ ′′; zn) gives the intersection with Ex1 ∩ ((E ′ \ N ′) × C)
of the solution of Harvey-Lawson, i.e. of the holomorphic chain in Ex1 whose
boundary (in the sense of currents) is either Ex1 ∩N or −Ex1 ∩N . Since Ex1 ∩N

is connected by our assumption (H) in 4.2.2, the extension of R|x=x1 is in fact
either holomorphic or the inverse of a holomorphic function. If x1 ∈ k(N) \ L,
the slice N ∩Ex1 is a nonempty compact maximally complex submanifold of Ex1

of real codimension 3 in view of (H). Hence on every connected component of
k−1(k(N))∩ ((E ′ \ N ′)×C), either R(x1; ζ ′′; zn) or its inverse is holomorphic for
fixed x1. It then follows from the Cauchy integral formula that the extension of
R (or of its inverse) is C∞ in all its variables.

4.5. Construction of the maximally complex subvariety in Γ \ N . We
consider the projection π : E → E and call Γ = Γπ the set of points z ∈ E such
that each point of π−1(π(z))∩N is a regular point of π|N (i.e. a smooth point of
N where the differential of π|N is injective).

Denote by (Vl)l the family of the connected components of E ′\N ′. Then for x0
1 ∈

k(N) \ L fixed, the function R(x0
1; ζ

′′;w) = Rx0
1
(ζ ′′;w) is meromorphic in (ζ ′′;w)

on each Vj ∩Ex0
1
. From the Poincaré-Lelong formula, Mx0

1
=

i

π
∂∂log|Rx0

1
(ζ ′′;w)|

is a holomorphic chain in the complement of Ex0
1
∩N in Ex0

1
∩ Γ. In view of 4.4,

±Mx0
1

is the intersection with Γ of the Harvey-Lawson solution for N ∩ Ex0
1

in

Ex0
1
. Then locally Mx0

1
=

∑
ml[Zl]−

∑
nl[Pl], where Zl (resp. Pl) are zero sets

of the irreducible factors fl (resp. gl) of Rx1 with multiplicities ml, nl ≥ 0. In
view of 4.4, for ξ0

1 ∈ k(N) \ L, the solution Mx0
1

is the integration current on a
complex subvariety Zx0

1
with multiplicity mx0

1
= ±1 depending on the orientation

of N . Define M to be the union of Mx0
1
, i.e. M = {(x1, z

′′) : z′′ ∈ Mx1}. Since M

is defined by R (or R−1), it is closed in (E ′ \ N ′)× C.
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Lemma 4.3. Let z0 be a point of M belonging to a complex leaf Mx0
1
, where x0

1 =
k(z0). Assume that z0 is a smooth point of Mx0

1
. Then there exists a neighbourhood

Uz0 of z0 in Cn \ N such that M ∩ Uz0 is smooth. Moreover, the multiplicity
m = mx0

1
is locally constant.

Proof. Consider the defining function R(x1; ζ ′′; zn) of M in the neighbourhood
of z0 = (x0

1; ζ
′′0; z0

n). The defining function of Mx0
1

is R(x0
1; ·; ·). It is rational in

zn with coefficients being smooth functions in (x1, ζ
′′) in view of 4.4. From the

regularity at z0, in the above notations we have Mx0
1

= mx0
1
[Zx0

1
], mx0

1
= ±1,

and R(x1; ζ ′′; zn) = (f(x1; ζ ′′; zn))±1, where f(x1; ζ ′′; zn) is C∞, holomorphic in
(ζ ′′; zn) and irreducible at z0. Hence the gradient of f(x1; ·; ·) does not vanish
at (ζ ′′0; z0

n). Then, locally near z0, M is given by f = 0 and is therefore a C∞

submanifold by the implicit function theorem. Let Z = f−1(0) locally; then
Zξ0

1
= Z|E

ξ01

, and there exists a neighbourhood Uz0 of z0 on which Z is smooth.
The multiplicity m is constant in view of 4.4. ¤

Corollary.- The integer m is constant on each connected component of (k(N) \
L)× Cn−1.

In view of Lemma 4.3, the set of the singular points of M is the union of the
singular points of the complex analytic sets Mx1 for x1 in a connected component
of k(N) \ L, since the complement of this set is smooth. The set of the singular
points of each Mx1 is of real dimension at most 2n− 6, x1 ∈ R, consequently the
Hausdorff dimension of the singular set of M is at most 2n− 5.

For x0
1 ∈ L, the situation is unknown at the moment.

The defining function R and the variety M are defined in
(
(E ′ \ N ′)× C)∩E′.

To extend M into a maximally complex (2n−3)-variety in (Γ\N)∩E′, we have to
extend M to any point z0 /∈ N with π(z0) = ζ ′ ∈ N ′. That is done by solving the
boundary problem in the neighborhood of z0 (for details, see [Do1, Proposition
6.6.2], [Ha], Lemma 3.22).

The variety M of Γ \N has a finite volume in the neighborhood of every point
z0 ∈ N ∩ Γ because, for x1 in the neighborhood of k(z0) in k(N) \ L, Mx1 is of
finite (2n − 4)-volume, so M is of finite (2n − 3)-volume. Then M has a simple
extension, still denoted M , to a rectifiable current of dimension (2n−3) in Γ∩E′.
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Moreover, on every connected component E′
0 of E′, dM =

∑
nj [Nj ], where

the Nj are the connected components of N ∩ Γ ∩E′
0, from classical properties of

locally rectifiable currents [Do1, Proposition 6.7.2].

4.6. End of the proof. We now give a sketch of the end of the proof of Theorem
4.1. Let Γ′ = Γ∩E′. By a generic choice of the projection π, we may assume that
H2n−4(N \ Γ) = 0.

Proposition 4.4. There exists a closed subset A of N (containing N \ Γ′) such
that H2n−4(A) = 0 and such that each point z0 = (x0

1, z
′′0, z0

n) of (N ∩Γ′) \A has
a small open neighbourhood B with the following properties:

a) B = I ×B′′ ×∆, where I is an interval of Rx1 centered at x0
1, B′′ a ball

of Cn−2
z′′ centered at z′′0, and ∆ a disc of Czn centered at z0

n;

b) W = supp M ∩ (B \N) is a submanifold, and either
(i) W is connected and the pair (±W,N ∩B) is a C∞ submanifold with

boundary, or

(ii) W = W ∪ (N ∩ B) is a connected, maximally complex submanifold
of B containing N ∩ B as a real C∞ hypersurface, dividing W into
two components Wi and Wj over (I ×B′′) ∩ Vi and (I ×B′′) ∩ Vj in
E, respectively.

In either case, if the labelling is chosen so that π(N ∩B) is the oriented boundary
of Vi ∩ (I ×B′′), then M |B is of the form (m + 1)[Wi] + m[Wj ] so that dM = N

on B. (In case (i), m = −1 or m = 0). Moreover, A can be chosen such that, for
every point z ∈ N ′ ∩ Ex where π|N is regular, one has H2n−3(A ∩ Ex ∩ Uz) = 0
for some neighborhood Uz of z.

Proof. The proof proceeds as the one of Lemma 3.24 of [Ha] for fixed x1 /∈ L (see
also [HaL]). Suppose B ⊂ Vj × C as in Proposition 4.4. Consider the function
Rj(x1; z′′;w) defined on Vj × C. In B, M is defined by the vanishing of the
function pj(x1, z

′′, w), product of the distinct factors of the numerator and the
denominator of the rational function Rj in w. The function pj(x1, z

′′, w) can be
considered as a unitary polynomial in w, up to a non vanishing factor. Since
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the coefficients of pj are C∞, B being contained in a connected component of
((k(N) \ L)× Cn−1) ∩ Γ, we get the conclusion. ¤

4.6.1. Varying the projection π. (cf. [Do1], 5.1.1, 6.1.2.)

Lemma 4.5. Let π, π′ ∈ CPn−1 be two projections, Γ′π,Γ′π′ the corresponding sets
Γ′. Then the currents Mπ in Γ′π, Mπ′ in Γ′π′agree on Γ′π ∩Γ′π′, and their union is
the current M in E′ \N with dM = N .

Proof. (From the proof of [Ha, Lemma 3.25].) It suffices to prove the first part
of the conclusion for π and π′ close enough. It is known and easy to show (see
[Do1]) that M = j∗S where S is a locally rectifiable current of E′ and j : E′ →
Cn is the inclusion and where the coefficient Cm(ζ ′) = π∗(zm

n Sπ) on Γ′π; the
projection π and hence the coordinate zn being chosen, let C ′

m(ζ ′) = π∗(zm
n Sπ′).

Then
(
d′′E +

∂

∂x1
dx1

)
Cm = π∗(zm

n P 1,2) =
(
d′′E +

∂

∂x1
dx1

)
C ′

m. The difference

cm = Cm − C ′
m satisfies the equation

(
d′′E +

∂

∂x1
dx1

)
cm = 0. Let B be a closed

ball of E containing M . Then it can be shown that Cm and C ′
m are defined on an

open set U ′ of E ′ containing points ouside π(B) and therefore Cm and C ′
m vanish

on U ′ \ π(B); since cm is holomorphic in z′′ and constant in x1, one has cm = 0
on U ′.

¤

This finishes the proof of Theorem 4.1.

5. On the existence of a Levi-flat (2n− 1)-subvariety with

prescribed boundary.

We now return to the initial problem of finding a real Levi-flat hypersurface in
Cn with prescribed boundary. We translate this problem into a boundary problem
for subvarieties of a hyperplane E of Cn+1 with negligible singularities, foliated
by holomorphic chains and then apply Theorem 4.1. We mention that Delannay
[De] gives a solution of the problem under certain additional assumptions.

Proof of Theorems 1.3 and 1.4. We first show that there exists a global smooth
function ν : S → [0, 1] without critical points away from the complex points such
that the complex points are ν−1(j), j = 0, 1, and the level sets of ν are the CR
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orbits of S away from the complex points. By Proposition 2.9, such ν can be
constructed near every complex point. Furthermore, in view of Proposition 3.1,
such ν can be obtained globally on S away from its complex points. Putting
everything together and using a partition of unity, we obtain a function ν : S →
[0, 1] with the desired properties.

The submanifold S, being locally the boundary of a Levi-flat hypersurface, is
orientable. We now set S̃ = N = gr ν = {(ν(z), z) : z ∈ S}. The corresponding
map λ : S → S̃, z 7→ ν((z), z) is a diffeomorphism; moreover λ|S\Sell

is a CR map.
Choose an orientation on S. Then N is an (oriented) CR subvariety with the
two-point set of singularities τ = λ(Sell).

At every point of S \ Sell, dx1ν 6= 0, then condition (H) of section 4.2.2 is
satisfied with L = k(Sell). Then all the assumptions of Theorem 4.1 are satisfied.
We conclude that N is the boundary of the Levi-flat (2n − 1)-subvariety M̃ in
[0, 1]×Cn ⊂ R×Cn = E. The desired conclusions now follow, at least away from
the complex points, from Theorems 4.1 and 4.4, where we take the intersection
of the sets A in Theorem 4.4 for all projections π. The description near complex
points is given in Remark 2.10. ¤

6. On the uniqueness of a Levi-flat (2n− 1)-subvariety with

prescribed boundary.

Here we shall prove Theorem 1.5. We begin by establishing an elementary
auxiliary lemma. Recall that a domain with C2-smooth boundary is strongly
convex if its boundary is locally at each point given by vanishing of a C2-smooth
function whose Hessian is positive definite.

Lemma 6.1. Let S ⊂ Rm be a compact, smooth submanifold. Then there exists
a bounded strongly convex domain in Rm with C2-smooth boundary whose closure
contains S and whose boundary contains a nonempty open subset of S.

Proof. Let B be the minimal open ball in Rm with center 0 whose closure contains
S. Then there exists a point p ∈ ∂B ∩ S. Without loss of generality, the ball is
unit and p = (0, . . . , 0,−1). Furthermore, we may assume that TpS = Rd × {0}
with d = dim S. Near p, the ball B is given by xm > −1 + ρ0, where

ρ0(x1, . . . , xm−1) := 1−
√

1− x2
1 − . . .− x2

m−1.
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The submanifold S near p is given by xj = ϕj = ϕj(x1, . . . , xd) for j = d +
1, . . . , m, for a suitable smooth functions ϕj . Since S ⊂ B, we have for all
(x1, . . . , xd) near 0,

ϕm(x1, . . . , xd) ≥ −1 + ρ0

(
x1, . . . , xd, ϕd+1(x1, . . . , xd), . . . , ϕm−1(x1, . . . , xd)

)
,

and therefore ρ(x1, . . . , xm−1) ≥ ρ0(x1, . . . , xm−1), where

ρ(x1, . . . , xm−1) := ρ0(x1, . . . , xm−1) + ϕm(x1, . . . , xd)

+ 1− ρ0

(
x1, . . . , xd, ϕd+1(x1, . . . , xd), . . . , ϕm−1(x1, . . . , xd)

)
.

Furthermore, we clearly have xm = ρ(x1, . . . , xm−1) whenever x ∈ S and the
function ρ is strongly convex. It remains to “glue” the functions ρ0 and ρ, i.e.
to construct a smooth strongly convex function ρ̃ which coincides with ρ in a
neighborhood U1 of 0 and with ρ0 outside another neighborhood U2 ⊃ U1. Thus
the proof is completed by applying in radial directions the following elementary
one-dimensional lemma whose proof is omitted. ¤

Lemma 6.2. Let ρ0(x) ≤ ρ(x) be two strongly convex C2-smooth functions in
x ∈ R. Then there is a third strongly convex C2-smooth function ρ̃(x) with ρ0(x) ≤
ρ̃(x) ≤ ρ(x) and two neighborhoods U1 ⊂ U2 of 0, such that ρ̃ = ρ in U1 and
ρ̃ = ρ0 outside U2. The neighborhoods U1 and U2 can be chosen arbitrarily small.
Moreover, if ρ and ρ0 depend C2-smoothly on an additional parameter y that
belongs to a compact manifold K, then U1 and U2 can be chosen arbitrarily small
and uniform for all y ∈ K and ρ̃ can be chosen C2-smooth in (x, y).

Recall that by a leaf in a Levi-flat (2n − 1)-subvariety M of Cn we mean a
maximal connected immersed complex hypersurface in Reg M , i.e. a connected
complex (n−1)-dimensional manifold L̃ with an injective holomorphic immersion
j : L̃ → M such that L = j(L̃) cannot be enlarged. By the intrinsic topology on
L we mean the one induced by j.

Proof of Theorem 1.5. Let Ω ⊂ Cn be a bounded strongly convex domain sat-
isfying the conclusion of Lemma 6.1. In view of (ii) (where we always refer to
Theorem 1.5), M has to be contained in Ω by the maximum principle. By the
same argument, also the image π(M̃) has to be contained in Ω.

Let A ⊂ S be as in Theorem 1.5 (iii) and Ã ⊂ S̃ be as in Theorem 1.4 (iii).
Since S ∩ ∂Ω has nonempty interior, we can find a point p ∈ (S ∩ ∂Ω) \ A. In
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addition, we may assume that p is a CR point of S. Then near p, M is a Levi-flat
hypersurface with boundary S by (iii). Since p is CR, the complex leaves L of a
sufficiently small neighborhood of p in M are closed complex submanifolds with
CR orbits of S as their boundaries. On the other hand, the same holds for the
images π(L̃) of the leaves L̃ of M̃ away from Ã. Recall from Theorem 1.4 (i)
that a leaf L̃ of M̃ is the regular locus of a complex-analytic (n− 1)-dimensional
subvariety (M̃ \ S̃) ∩ ({x} ×Cn) for x ∈ (0, 1). We shall write L̃x to indicate the
dependence on x. Without loss of generality, p̃ := (π|

S̃
)−1(p) /∈ Ã. Since both L

and π(L̃) are in Ω and Ω is strongly convex, it follows that, whenever L and π(L̃)
are bounded by the same CR orbit, they must coincide in a neighborhood of p (we
have used the well-know fact that a holomorphic function is uniquely determined
by its boundary value on a real hypersurface). Consequently, a neighborhood of
p in M coincides with the image of a neighborhood of p̃ in M̃ .

We next consider any global complex leaf L̃ = L̃x0 of M̃ with x0 ∈ (0, 1)
such that M contains a nonempty open subset of π(L̃). Assume first that
H2n−3(Sing M ∩ π(L̃)) = 0. Then π(L̃) \ Sing M is connected. Since Reg M is a
Levi-flat hypersurface and π(L̃) is a (locally closed) smooth complex hypersurface
in Cn, it is easy to see that the set of all points of π(L̃) ∩ M that are interior
with respect to π(L̃) is both open and closed in π(L̃) \ Sing M . This shows that
π(L̃) \ Sing M ⊂ M and therefore π(L̃) ⊂ M .

On the other hand, suppose that H2n−3(Sing M ∩ π(L̃)) > 0. We claim that
this can only happen for at most countable set S of leaves L̃. Indeed, this follows
immediately from (i) and the fact that dim(π(L̃1) ∩ π(L̃2)) ≤ 2n − 4 whenever
L̃1 and L̃2 are two distinct leaves.

We are now ready to prove that π(L̃x0) ⊂ M for any x0. Indeed, it follows from
the above that the set A of such x0 is nonempty. Since M is closed, the set A is
also closed in the interval (0, 1). We have to show that it is open. Fix any x0 ∈ A
and consider L̃ = L̃x0 . Since dim L̃ = 2n − 2, we have π(L̃) 6⊂ Sing M in view of
(i). Since each connected component of L := π(L̃) \ Sing M ⊂ Reg M is a subset
of a leaf of M , we conclude from (iii) that π(L̃)∩S is not contained in A. Then we
can find a point q ∈ (π(L̃) ∩ S) \A such that q̃ := (π|

S̃
)−1(q) /∈ Ã (where we use

the conclusion (iii) of Theorem 1.4 that is assumed to be satisfied). Then both M

and the image of a neighborhood of q̃ in M̃ are Levi-flat hypersurfaces with the
same boundary S. Moreover, they both contain an open subset of π(L̃). Arguing
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as above, we see that these two Levi-flat hypersurfaces must coincide near q. In
particular, for any leaf L̃x1 with x1 sufficiently close x0, M contains a nonempty
open subset of π(L̃x1). Above we have seen that either π(L̃x1) ⊂ M or L̃x1 is one
of the countably many leaves withH2n−3(Sing M∩π(L̃x1)) > 0. In the latter case,
x1 is a limit of a sequence of points x′1 with H2n−3(Sing M ∩ π(L̃x′1)) = 0. Then
π(L̃x′1) ⊂ M for each such x′1 and therefore π(L̃x1) ⊂ M because M is closed.
This shows that A is indeed open and thus completes the proof that π(L̃x0) ⊂ M

for any x0.

Thus π(M̃) ⊂ M by taking the closure. We finally claim that π(M̃) = M . It
suffices to show that Reg M ⊂ π(M̃). Assume by contradiction that there exists
z ∈ Reg M \ π(M̃) and consider the leaf L ⊂ Reg M through z. In view of (iii),
there exists a point q ∈ (L ∩ S) \ A, which is a CR point S. Since near q, M is
a Levi-flat hypersurface with boundary S, it follows that L contains a complex
hypersurface with boundary being one of the CR orbits of S. On the other hand,
there exists a (unique) leaf L̃ of M̃ such that π(L̃) contains q in its closure. In fact,
L̃ = L̃x with x being the projection to R of q̃ := (π|

S̃
)−1(q) ∈ R× Cn. Moreover

we have shown that π(L̃) ⊂ M . Then π(L̃) must contain an open subset of L

(with respect to the intrinsic topology) and therefore π(L̃) contains the whole
L. In particular, π(L̃) contains the point z, which leads to a contradiction. The
proof is complete. ¤
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Université Pierre et Marie Curie,



On Levi-flat Hypersurfaces with Prescribed Boundary 753

175 rue du Chevaleret, 75013 Paris, FRANCE
Email: pierre.dolbeault@upmc.fr

Giuseppe Tomassini
Scuola Normale Superiore
Piazza dei Cavalieri 7, 56126 Pisa, ITALY
E-mail: g.tomassini@sns.it

Dmitri Zaitsev
School of Mathematics
Trinity College Dublin, Dublin 2, Ireland
E-mail: zaitsev@maths.tcd.ie


