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1. Introduction

1.1. Algebraic submanifolds and maps. A real (resp. complex) submanifold M⊂Cn

is real-algebraic (resp. complex-algebraic), if it is contained in a real-algebraic (resp.
complex-algebraic) subset of the same dimension (see §2.1). By a local holomorphism
between real submanifolds M⊂Cn and M ′⊂Cn′

we mean a holomorphic map f from a
domain U⊂Cn with U∩M �=∅ into Cn′

with f(M∩U)⊂M ′. If in addition f−1 exists
and is a local holomorphism between M ′ and M , we call f a local biholomorphism. In
this paper we study the following question:

When is a local holomorphism between real-algebraic submanifolds complex-algebraic?

Here a map f is called complex-algebraic, if its graph is a complex-algebraic sub-
manifold of Cn×Cn′

. We use this setting throughout the paper.

1.2. A short history of the question. Poincaré [Po] was one of the first who studied
algebraicity properties of local biholomorphisms between hypersurfaces. He proved that
a local biholomorphism between open pieces of 3-spheres in C2 is a rational map. This
result was extended by Tanaka [Ta] to higher-dimensional spheres. An important step
in understanding this phenomenon was done by Webster [W1] who proved the algebraic-
ity of local biholomorphisms f between Levi-nondegenerate algebraic hypersurfaces M

and M ′. Optimal conditions on M and M ′ for the algebraicity of local biholomorphisms
were found recently by Baouendi and Rothschild [BR1] in the case when M and M ′ are
hypersurfaces, and later extended by Baouendi, Ebenfelt and Rothschild [BER1] to the
case when M and M ′ are submanifolds of higher codimensions. The question, when the
so-called normal component of a local biholomorphism f (rather than f itself) is alge-
braic, was recently answered by Mir [Mi] in the case when M and M ′ are hypersurfaces.

A typical example of a biholomorphism is an extension of a biholomorphic map
between smooth domains Ω,Ω′⊂Cn to a boundary point of Ω. A consequence of the
algebraicity of such a biholomorphism is a holomorphic extension as a correspondence
to the boundary M=∂Ω (see e.g. [DP1], [BHR], [H3], [HJ], [DP2] and [Z3] for recent
applications of extensions as correspondences). Furthermore, algebraic properties of
single biholomorphisms can be used to study automorphism groups of domains defined
by polynomial inequalities (see e.g. [Z1], [HZ]).

Similarly boundary extensions of proper holomorphic maps lead to the study of local
holomorphisms between hypersurfaces of different dimensions. An important step here
was done by Huang [H1] (see also [H2]) who proved the algebraicity of holomorphisms
between strongly pseudoconvex hypersurfaces. A generalization in another direction was
obtained by Sharipov and Sukhov [SS] (see also Sukhov [Su2]) for different dimensions
under certain conditions on the Levi forms (see §1.5).
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One of the goals of Theorem 1.1 is to unify the algebraicity results of Webster [W1],
Huang [H1], Sharipov–Sukhov [SS] and Baouendi–Ebenfelt–Rothschild [BER1]. On the
other hand, Theorem 1.1 covers also new situations, e.g. maps between non-pseudoconvex
Levi-nondegenerate hypersurfaces of different dimensions (see §§1.4–1.6).

1.3. The main result. We first formulate the most general algebraicity result and
then go to applications and special cases. Given a local holomorphism f :U→U ′⊂Cn′

and x∈U∩M , let �(z, z̄) and �′(z′, z̄′) be local defining algebraic vector-valued functions
for M⊂Cn and M ′⊂Cn′

defined in U and U ′ respectively with d� and d�′ of maximal
ranks. Important invariants of M and M ′ are the corresponding families of Segre varieties
Qw :={z∈U :�(z, �w)=0} for w near x, and Q′

w′ :={z′∈U ′ :�′(z′, �w′)=0} for w′ near f(x)
(see §2.3 for more details).

Given M , M ′, f and x as before, we attach to them two invariantly defined germs
rx and r2

x of analytic subsets of Cn′
at f(x) as follows (see below for the definitions in

terms of Segre varieties):

rx := {w′ near f(x) : �′(f(z), w̄′)= 0 for every z near x with �(z, x̄)= 0} (1)

and

r2
x := {z′ near f(x) : �′(z′, �w′)= 0 for every w′∈ rx near f(x)}. (2)

Since the defining functions are unique up to multiplication by an invertible matrix
function, both rx and r2

x are independent of the choice of the defining functions. If
U and U ′ are sufficiently small neighborhoods of x and f(x) respectively, then rx=
{w′ : Q′

w′⊃f(Qx)} and r2
x is the intersection of all Segre varieties Q′

w′ containing f(Qx)
(cf. §2.4). The germ rx generalizes the essential variety Ax attached to a real-analytic
CR-submanifold that has been used by many authors (see e.g. [DW], [BJT], [DF2], [BR2],
[Fo1], [H2], [DP1], [H3], [HJ] and [DP2]). Namely one has Ax=rx in the case M=M ′

and f=id.
The second invariant r2

x seems to be new. It may seem natural to apply this proce-
dure one more time by replacing rx with r2

x in (2). However, the germ “r3
x” obtained in

this way coincides with rx.
Recall that M is called generic in Cn at x0, if � can be chosen near x0 with ∂� of

the same rank as d�. Then the complex tangent space T c
xM :=TxM∩ iTxM is of constant

dimension for x near x0 (i.e. M is CR). A generic submanifold M is said to be of finite
type (in the sense of Bloom–Graham [BlGr] and Kohn [K]) at x if TxM is spanned by
smooth T cM -vector fields on M together with their higher-order commutators. In this
paper we always mean this notion of finite type unless otherwise specified. A connected
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real-analytic submanifold is generic and of finite type at some point if and only if it is
generic and of finite type on an open dense subset (see §2.2).

Theorem 1.1. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic submanifolds M⊂Cn and M ′⊂Cn′
satisfying the following conditions:

(i) M is generic and of finite type at some point ;
(ii) For every x from a nonempty open subset of M∩U , f(x) is isolated in rx∩r2

x.
Then f is complex-algebraic.

Remarks. The basic property �(z, �w)=0 ⇒ �′(f(z), f(w))=0 for local holomor-
phisms implies f(x)∈rx. Since �(x, x̄)=0, the identity �′(f(x), �w′)=0 holds for all w′∈rx.
Hence f(x)∈r2

x. Given M , M ′ and f , the conditions of Theorem 1.1 can be verified ef-
fectively using the defining functions � and �′.

The condition of finite type holds, in particular, if the Levi cone of M has a nonempty
interior (see §1.5). If M⊂Cn is a hypersurface, it is automatically generic and (i) is
equivalent to the condition that M is not Levi-flat (i.e. the Levi form does not vanish
identically).

The conditions in Theorem 1.1 are optimal in the following sense. If (i) does not
hold, there always exist nonalgebraic local holomorphisms between M and M ′ as follows
from Theorem 1.3. In §2.4 we show that rx∩r2

x is always contained in M ′. If (ii) does not
hold, any nonalgebraic holomorphic map from a neighborhood of x in Cn into rx∩r2

x is a
local holomorphism between M and M ′. An example in §2.4 shows that condition (ii) in
Theorem 1.1 cannot be replaced by the weaker condition that f(x) is isolated in rx∩r2

x

for some x, even in the case when M and M ′ are hypersurfaces.

The proof of Theorem 1.1 is given in §5. The remainder of §1 contains several basic
consequences of Theorem 1.1 including the known results.

1.4. Conditions in terms of analytic discs in M ′. By an analytic disc in a subset
A⊂Cn′

we mean a nonconstant holomorphic map h from the unit disc ∆⊂C into Cn′

with h(∆)⊂A. If condition (ii) in Theorem 1.1 does not hold for some x∈M∩U , then
rx∩r2

x defines a nontrivial germ of an analytic subset through f(x). In fact, this germ is
always contained in M ′ (Corollary 2.8). Hence we obtain the following corollary:

Corollary 1.2. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic submanifolds M⊂Cn and M ′⊂Cn′
satisfying the following conditions:

(i) M is generic and of finite type at some point ;
(ii) For every x from a nonempty open subset of M∩U , M ′∩rx does not contain

analytic discs through f(x).
Then f is complex-algebraic.
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Corollary 1.2 contains, as a special case, the implication (i) ⇒ (ii) in the following
criterion:

Theorem 1.3. Let M⊂Cn and M ′⊂Cn′
be connected real-algebraic submanifolds.

Then the following are equivalent :
(i) M is generic and of finite type at some point and M ′ contains no analytic discs;
(ii) Every local holomorphism between M and M ′ is algebraic.

Proof. It remains to show (ii)⇒ (i). If the subset of generic points of M is not dense,
the local intrinsic complexification M̃ of M near some x∈M is a complex submanifold
of Cn of positive codimension. Hence in a neighborhood of x there exists a nonalgebraic
holomorphic map f which sends M̃ into one point of M ′ and thus obviously satisfies
f(M)⊂M ′.

If the subset of generic but not finite-type points of M is not dense, then by
Lemma 3.4.1 in [BER1], there exists a nonconstant complex-algebraic holomorphic func-
tion h in a neighborhood of some point x∈M such that h(M)⊂R. Hence every real-
analytic nonalgebraic curve γ: (h(a)−1, h(a)+1)⊂R→M ′ defines a nonalgebraic holo-
morphism γ�h between M and M ′.

Finally, if M ′ contains an analytic disc, a neighborhood of a point x∈M can be sent
to this disc by a nonalgebraic holomorphic map. �

Condition (i) holds e.g. if M and M ′ are hypersurfaces (of possibly different dimen-
sions) of finite type in the sense of D’Angelo [D]. In particular, Corollary 1.3 contains
the algebraicity theorem of Huang [H1].

Theorem 1.3 can be applied to proper mappings between not necessarily smooth
bounded domains of different dimensions. By a result of Diederich and Fornaess [DF1],
if M is contained in a compact real-analytic subvariety of Cn, it does not contain analytic
discs. We obtain the following corollary:

Corollary 1.4. Let D⊂Cn (n�2) and D′⊂Cn′
be bounded domains whose bound-

aries are contained in compact real-algebraic subsets. Then every proper holomorphic map
f :D→D′ is algebraic provided it extends holomorphically to a neighborhood of at least
one boundary point x∈∂D.

For n=1 the statement obviously fails. See [TH], [Tu2], [Fo2], [Su3], [Su4] for related
results in the case of quadrics.

After Theorem 1.3 was written in the first version of this paper the author received
the preprint by Coupet, Meylan and Sukhov [CMS], where they proved a weaker version
of Theorem 1.3 with the condition of finite type replaced by the stronger condition of
“Segre transversality”. They also gave a sharp estimate on the “transcendence degree”
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of f in a more general situation, where f is not necessarily algebraic. The nature of the
method in [CMS] is algebraic in contrast to the analytic method of this paper.

1.5. Levi-form conditions. Suppose that M⊂Cn is a CR-submanifold (i.e. dim T c
xM

is independent of x∈M) and let

Lx:T c
xM×T c

xM →CTxM/CT c
xM

be the Levi form (see §2.6) after the standard identification T cM∼=T 1,0M . To every
linear subspace V⊂T c

xM we associate its Levi-orthogonal complement :

V ⊥ := {u∈T c
xM : L(u, v)= 0 for all v∈V }. (3)

In §2.6 we prove that the Whitney tangent cone Tf(x)rx is contained in (df(T c
xM))⊥.

Then, for every analytic disc h:∆→rx through f(x), the Whitney tangent cone Tf(x)h(∆)
is contained in (df(T c

xM))⊥. We say that a disc h is in the direction of a linear subspace
W⊂Cn′

, if Tf(x)h(∆)⊂W . This is equivalent to the condition that the first nonvanish-
ing derivative of h at h−1(f(x)) is contained in W . The following is a special case of
Corollary 1.2 that does not involve rx (the Levi orthogonality is understood with respect
to the Levi form of M ′).

Corollary 1.5. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic CR-submanifolds M⊂Cn and M ′⊂Cn′
satisfying the following conditions:

(i) M is generic and of finite type at some point ;
(ii) For every x from a nonempty open subset of M∩U , M ′ does not contain ana-

lytic discs through f(x) in the direction of (df(T c
xM))⊥.

Then f is complex-algebraic.

A further special case of Corollary 1.5 can be formulated without analytic discs. We
say that a CR-submanifold M ′⊂Cn′

is strongly pseudoconvex in the direction of a linear
subspace W⊂T c

x′M ′ if Lx′(u, u)=0 for u∈W implies u=0. This notion coincides with
the usual strong pseudoconvexity if M ′ is a hypersurface and W =T c

x′M ′.

Corollary 1.6. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic CR-submanifolds M⊂Cn and M ′⊂Cn′
satisfying the following conditions:

(i) M is generic and of finite type at some point ;
(ii) For some x∈M∩U , M ′ is strongly pseudoconvex in the direction of (df(T c

xM))⊥.
Then f is complex-algebraic.

Note that if condition (ii) holds for some x∈M∩U , it holds also for all x nearby.
Corollary 1.6 is a consequence of Corollary 1.5 because, if h is an analytic disc in M ′

through x′, the Levi form Lx′ is vanishing on the Whitney tangent cone of h.
Using the wedge extension by Tumanov [Tu1] and the reflection principle in the form

of Sukhov [Su1] we obtain from Corollary 1.6:
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Theorem 1.7. Let f :M→M ′ be a CR-map of class C1 between connected real-
algebraic CR-submanifolds M⊂Cn and M ′⊂Cn′

. Suppose that the following is satisfied :
(i) M is generic and of finite type at some point ;
(ii) (df(T c

xM))⊥={0} for some x∈M .
Then f is complex-algebraic.

Theorem 1.7 generalizes a result of Sharipov and Sukhov [SS], where (i) was replaced
by the stronger assumption that the Levi cone of M (i.e. the convex hull of the set of
vectors Lx(u, u) for all u∈T c

xM ) has a nonempty interior.

1.6. Essential finiteness and holomorphic nondegeneracy. Baouendi, Jacobowitz
and Trèves [BJT] introduced the notion of the essential finiteness of a real-analytic CR-
submanifold M⊂Cn. Using the construction (1) for the identity map f :Cn→Cn, their
definition can be reformulated as

Definition 1.8. Let M=M ′⊂Cn be a real-analytic CR-submanifold and f=id. Then
M is essentially finite at x∈M if x is isolated in rx.

In fact, if M is essentially finite, the property of f(x) to be isolated in rx holds for
every f with f(Qx) open in Q′

f(x). Using the elementary properties of Segre varieties
(see Proposition 2.5) we obtain the following consequence of Theorem 1.1.

Theorem 1.9. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic CR-submanifolds M⊂Cn and M ′⊂Cn′
satisfying the following conditions:

(i) M is generic and of finite type at some point ;
(ii) M ′ is essentially finite at some point ;
(iii) df(T c

xM)=T c
f(x)M

′ for some x∈M∩U .
Then f is complex-algebraic.

By Proposition 1.3.1 in [BER1], M ′ is essentially finite at some point if and only
if it is holomorphically nondegenerate. Hence the conditions of Theorem 1.9 are in
particular satisfied in the important case where dim M=dim M ′, M,M ′⊂Cn are generic,
of finite type, holomorphically nondegenerate, and f is locally biholomorphic. In this case
Theorem 1.9 is equivalent to the algebraicity result of Theorem 3 of Baouendi, Ebenfelt
and Rothschild [BER1]. Example 1.1 in [Z2] gives a situation, where Theorem 1.9 is
applicable but f is not locally biholomorphic.

We conclude with an application of Theorem 1.9 for smooth CR-maps. Suppose
that M,M ′⊂Cn are generic submanifolds of the same dimension. Recall that a CR-map
f :M→M ′ is called not totally degenerate at a point x if the Jacobian of the formal map
between the Segre varieties Qx and Q′

f(x), induced by the complexified formal Taylor
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series of f at x, is not identically vanishing. Meylan [Me] proved the following version of
the reflection principle for generic manifolds of arbitrary codimension.

Theorem 1.10 (Meylan). Let M,M ′⊂Cn be connected generic real-analytic sub-
manifolds of the same dimension, and f :M→M ′ be a CR-map of class C∞ that extends
holomorphically to a wedge with the edge M . Suppose that f is not totally degenerate at
a point x∈M and M ′ is essentially finite at f(x). Then f extends holomorphically to a
neighborhood of x.

We use Theorem 1.10 together with Theorem 1.9 in the following result.

Theorem 1.11. Let M,M ′⊂Cn be connected generic real-algebraic submanifolds of
the same dimension, and f :M→M ′ be a CR-map of class C∞ satisfying the following
conditions:

(i) M is of finite type at x;
(ii) f is not totally degenerate at x;
(iii) M ′ is essentially finite at f(x).
Then f extends to a complex-algebraic holomorphic map in a neighborhood of x.

Proof. By Tumanov’s theorem [Tu1], f extends holomorphically to a wedge with the
edge M . Since f is of class C∞, the extension is also of class C∞ (see e.g. [BER4, Theo-
rem 7.5.1]). By Theorem 1.10, f extends to a holomorphic map in a neighborhood of x,
also denoted by f . Then condition (ii) means that the restriction f |Qx is generically of
maximal rank. By Proposition 2.5 below, condition (iii) in Theorem 1.9 becomes satisfied
after possible change of x. Then the required statement follows from Theorem 1.9. �

1.7. Basic methods. Our method of proving Theorem 1.1 is based on a modified
geometric reflection principle. One main difference from the methods of [W1] and of
[BER1] is that the graph of f is obtained as an intersection of two different algebraic
families, each given by a suitable reflection of jets, rather than a reflection of one jet
that is in general not sufficient in the situation of Theorem 1.1. We use families of Segre
varieties, their jets and iterations of them. The latter are closely related to the Segre
sets (see [BER1]).

The basic elementary property of Segre varieties used in most applications is their
invariance under local holomorphisms (see Proposition 2.4). As pointed out in §1.3,
this fact immediately implies f(x)∈rx. The known idea is to extend rx to an “analytic
family” by the formula rw :={w′ :Q′

w′⊃f(Qw)} with w∈Cn near x without loosing the
inclusion f(w)∈rw. If f is a biholomorphism and M ′ is essentially finite, the set rx

is finite near f(x), and hence f(w) is determined by the above inclusion up to a finite
number of possibilities. This finite determinacy is still valid after replacing f(Qw) by
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its k-jet if k is sufficiently large. See [DW], [BR1], [BER1], [BER2], [BER3], [Z2] and
[BER5] for higher-order jet reflections of this kind.

The main difficulty in the situation of Theorem 1.1 is that the above finite determi-
nacy is no longer valid because the set rw may have positive dimension. This makes it
impossible to apply the above method. Another approach to this problem was proposed
by Forstnerič [Fo1] in the case where f(w) is determined by the condition f(w)∈rw∩M ′

for w∈M . This determinacy is a consequence of the condition (A) (see [Fo1, §2, defi-
nition (2.4)]), essentially meaning that f(x) is isolated in rx∩M ′. Compare this with
Corollary 1.2, where condition (A) is replaced by a weaker condition of nonexistence of
analytic discs in the same set. If M ′ is a strongly pseudoconvex hypersurface, condi-
tion (A) is always satisfied. For general hypersurfaces, condition (A) is stronger than
e.g. condition (i) in Theorem 1.3 as the example M ′={Re w=zz̄(z+z̄)}⊂C2 shows.

Our idea here is to establish an algebraic relation between the jets of f at three
(instead of two) different points w, z and w1 (see Propositions 5.1 and 5.5). The k-jets
jk
wf and jk

z f parametrize certain algebraic families (denoted by A and B) such that
f(w1) is algebraically determined up to finitely many possibilities by the intersection of
these families (see the proof of Proposition 5.1). We show that this finite determinacy is
guaranteed by condition (ii) in Theorem 1.1. In fact, one family arises from rx and the
other from r2

x. The last family is not analytic in general and we have to move to a generic
point to avoid this difficulty. Another difficulty is due to the fact that r2

x extends to a
family of analytic subsets depending antiholomorphically on x (in contrast to rx). This
is overcome by taking the conjugate and moving the parameters of these two families
independently. This is basically the reason that two different jets appear as parameters.
The condition of finite type is not used on this step.

An immediate consequence of Proposition 5.1 is the algebraicity of f along the Segre
varieties. The second main step is the differentiation and the iteration of the identity
provided by Proposition 5.1. This leads to the algebraicity of f along the Segre sets Qs

w

(see Definition 2.9). Due to the criterion of Baouendi, Ebenfelt and Rothschild [BER1]
(see Theorem 2.10), condition (i) in Theorem 1.1 guarantees that dimQs

w=n for some s.
For this s, the algebraicity of f |Qs

w is equivalent to the algebraicity of f as required in
Theorem 1.1.

1.8. Organization of the paper. In §2 we recall some basic constructions that are
used in the paper and their properties. In §3 we develop some technical tools for the
proof of Theorem 1.1. In §4 we prove basic properties of jets of holomorphic mappings
and jets of complex submanifolds that are needed for the proof of Proposition 5.1. In
§5.2 the proof of Theorem 1.1 is completed.
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2. Some background material

2.1. Real- and complex-algebraic sets and their dimensions. A subset A⊂Rm (resp.
A⊂Cn) is real-algebraic (resp. complex-algebraic) if it is the zero set of (finitely many)
real (resp. complex) polynomials. A real-algebraic subset of Cn is defined via the iden-
tification Cn∼=R2n. The real dimension of a real-algebraic set A⊂Rm is the maximal
dimension of a real-analytic submanifold of Rm that is contained in A. The complex
dimension of a complex-algebraic set is defined similarly. See e.g. [BeRi] and [Mu] for
basic properties of real- and complex-algebraic sets respectively.

2.2. CR-points of finite type. Let M⊂Cn be a connected real-analytic submanifold.
Recall that M is CR at a point x∈M if dim T c

xM=min{dim T c
yM : y∈M}. If �(z, z̄) is

a defining function, M is CR at x if and only if rank(∂�(x))=max{rank(∂�(y)): y∈M}.
Either M is nowhere generic or it is generic exactly at the CR-points. The idea of the
proof of the following lemma is essentially borrowed from [BR1, Lemma 4.9]. In the case
when M is a CR-manifold, a simpler proof can be found in [BER4, Theorem 1.5.10].

Lemma 2.1. The set of all points where M is either not CR or M is CR but not
of finite type is real-analytic.

Proof. Since the statement is local, we may assume that M is globally defined by
a real-analytic defining function �(z, z̄). The set of points where M is not CR is real-
analytic because this is exactly the set where the rank of ∂� is smaller than maximal.
If X∈Γ(M,TxCn) is a vector field along M , the condition X(x)∈T c

xM defines a linear
system A(x)X(x)=0, where A is a real-analytic matrix function.

Set d :=min{dim T c
yM : y∈M}. Then, for every CR-point x∈M , i.e. if dim T c

xM=d,
there exists a coordinate permutation in Cn=Cd×Cn−d such that the projection of
T c

xM to Cd is bijective. Writing X(y)=Y (y)+Z(y)∈Cd×Cn−d, we conclude that, for
every Y (y) and y near x, the system A(y)(Y (y)+Z(y))=0 has a unique solution Z(y).
Applying Cramer’s rule to the standard basis Y1, ..., Yd of constant vector fields in Cd

we obtain a collection Y1+Z1(y), ..., Yd+Zd(y) of vector fields in T cM that span T c
xM

for y=x, and whose coefficients are ratios of real-analytic functions with denominators
nonvanishing at x. After multiplying by the common denominator we obtain a collection
X of real-analytic vector fields X1, ...,Xd that span T c

xM . If for some CR-point y∈M ,
X spans T c

y M , then M is of finite type at y if and only if X spans TyM together with
higher-order commutators. The set S̃ of points y∈M where X and the higher-order
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commutators do not span TyM is clearly real-analytic. Then the subset S⊂M in the
lemma is the union of the set of all “non-CR-points” and the intersection of the sets S̃

for different permutations of the coordinates in Cn. Hence S is real-analytic. �

2.3. Segre varieties and their properties. For the reader’s convenience we collect here
some well-known facts about Segre varieties. Let M⊂Cn be a real-analytic submanifold,
x∈M be arbitrary and �(z, z̄) be an analytic vector-valued defining function.

Convention. Throughout this paper we use the notation �V , where V is a complex
manifold. The complex manifold �V has the same coordinate charts with conjugated
coordinates. The conjugation defines a canonical antiholomorphic map V →�V , z 	→z̄.

Definition 2.2. For every pair (U, �), define the complexification M by

M=M(U, �) := {(z, �w)∈U×�U : �(z, �w)= 0}

and, for every w∈U , the Segre variety Qw⊂U by

Qw =Qw(U, �) := {z∈U : (z, �w)∈M}= {z∈U : �(z, �w)= 0}.

In general, M is a complex-analytic subset of U×�U . If M is a CR-submanifold,
then M is a complex submanifold near (x, x̄). The same holds for the Segre varieties Qw

near x with w also near x.
Segre varieties were introduced by Segre [Se] and played an important role in the

reflection principle in several complex variables (see e.g. [Pi], [L2], [W1], [W2], [DW],
[BJT] and more recent papers). In the case when n=1 and M⊂C is a real-analytic
curve, the Segre variety Qw is a one-point set, whose only element is the classical anti-
holomorphic Schwarz reflection of w about M . This reflection is involutive and has M

as the fixed point set. These two properties have the following counterpart in several
complex variables (a consequence of the identity �(z, �w)=�(w, z̄)):

Proposition 2.3. For every z, w∈U , z∈Qw is equivalent to w∈Qz, and z∈Qz is
equivalent to z∈M∩U .

Segre varieties are invariant under local holomorphisms:

Proposition 2.4. Let M⊂Cn and M ′⊂Cn′
be real-analytic submanifolds, (U, �)

and (U ′, �′) be their defining functions, and f :U→U ′ be a local holomorphism between
M and M ′. Then f(Qw∩U(x))⊂Q′

f(w) for all w∈U(x) with U(x)⊂U an appropriate
neighborhood of x.

A more precise description of the Segre varieties in the case where M is a CR-
submanifold is given in the following proposition (a consequence of the lower semiconti-
nuity of the rank of a holomorphic map):
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Proposition 2.5. In the above notation let M⊂Cn be a CR-submanifold and d :=
dim T c

xM . Then the following is satisfied :
(1) There exist neighborhoods U(x),V (x)⊂U such that for every w∈U(x), Qw∩V (x)

is a (possibly empty) connected complex submanifold of dimension d;
(2) TxQx=T c

xM ;
(3) If f :U→Cn′

is a holomorphic map and (z, �w)∈M is close to (x, x̄), then

dim df(T c
xM)� rankz(f |Qw)� max

y∈M∩U
dim df(T c

yM).

If M is in addition generic, Qw in statement (1) is always nonempty for w close to x.

2.4. Reflections of subsets in terms of Segre varieties. The germs rx and r2
x defined

in §1.3 are special cases of the following construction:

Definition 2.6. Let M⊂Cn be a real-analytic submanifold and (U, �) be a defining
function. For every subset A⊂U define the inner reflection by

rM (A) := {w∈U : Qw ⊃A}=
⋂

z∈A

Qz (4)

and the outer reflection by

RM (A) := {w∈U : Qw∩A �= ∅}=
⋃

z∈A

Qz.

The equalities here are consequences of Proposition 2.3. The Segre varieties Qw

themselves are also special cases of these reflections: Qw=rM ({w})=RM ({w}). If U and
U ′ are sufficiently small (more precisely, if Qx is contained in a connected submanifold Q

of the same dimension with f(Q)⊂U ′, and if all irreducible components of rM (f(Qx))
pass through f(x)), the definitions of rx and r2

x in §1.3 can be reformulated as follows:

rx = rM (f(Qx)) and r2
x = rM (rx) (in the sense of germs). (5)

Clearly rM (A) is a closed analytic subset of U , even if A is not (RM (A) is in general
not analytic). If M is in addition algebraic, then rM (A) is a local algebraic subset of Cn,
i.e. a subset locally defined by vanishing of algebraic functions. Notice that this property
is different from being locally defined by vanishing of polynomials, as is shown by the
example of analytically irreducible components of the cubic {(z1, z2)∈C2 : z2

2=z2
1(1−z1)}

at the origin.
In the situation of Theorem 1.1 the germ rx⊂Cn′

is defined by holomorphic func-
tions whose coefficients are real-analytic in x∈M . Hence dim rx is upper semicontinuous
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in x. However, dim r2
x is not necessarily upper semicontinuous, and therefore condi-

tion Theorem 1.1 (ii) cannot be weakened by requiring that f(x) is isolated in rx∩r2
x

for some x. This can be demonstrated by the following example, communicated to the
author by J. Merker.

Example. Define

M := {2Re z1 = |z2|2}⊂C2,

M ′ := {2Re z1 = |z2|2+2Re(z3+z2
2 z̄3)z̄4}⊂C4

and f(z1, z2):=(z1, z2, ϕ(z1), 0), where ϕ is an arbitrary holomorphic function on C
with ϕ(0)=0. Clearly f(M)⊂M ′, and M is generic and of finite type. Then, for
x=(x1, x2)∈M , Qx={(z1, z2):z1+x̄1=z2x̄2}, f(Qx)={(tx̄2−x̄1, t, ϕ(tx̄2−x̄1), 0): t∈C}
and

r(x1,x2) = {w∈C4 : tx̄2−x̄1+�w1 = t�w2+(ϕ(tx̄2−x̄1)+t2�w3))�w4 for all t∈C}.

In particular,

r0 = {(0, 0, w3, 0) : w3∈C}∪{(0, 0, 0, w4) : w4∈C} and r2
0 = {(0, z2, 0, 0) : z2∈C}.

Hence f(0)=0 is isolated in r0∩r2
0 but f is not necessarily algebraic.

On the other hand, if f (and therefore ϕ) is not algebraic, ϕ′′′(−x̄1) �=0 holds for
some x=(x1, x2)∈M . Then the differentiations in t up to the third order of the equa-
tion in the above formula for t=0 yield r(x1,x2)={(x1, x2, w3, 0):w3∈C} and r2

(x1,x2)
=

{(z2x̄2−x̄1, z2, z3, 0):(z2, z3)∈C2}. Hence f(x) is not isolated in rx∩r2
x=rx. Thus con-

dition (ii) in Theorem 1.1 is not satisfied.

For the inner reflection, we use the following elementary properties:

Lemma 2.7. For every subset A⊂U , A∩rM (A)⊂M and A⊂rM (rM (A)).

Proof. If a∈A and a∈rM (A)=
⋂

z∈A Qz, then clearly a∈Qa. Then Proposition 2.3
implies a∈M . Since a∈A is arbitrary, this means A⊂M . Furthermore, by the construc-
tion of rM (A),

rM (rM (A))=
⋂
{Qz : z∈ rM (A)}=

⋂
{Qz : Qz ⊃A}⊃A. �

Applying Lemma 2.7 to A :=rx and using (5) we obtain:
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Corollary 2.8. The germ rx∩r2
x is always contained in M ′.

2.5. A finite-type criterion of Baouendi, Ebenfelt and Rothschild. The outer re-
flection can be used to define the Segre sets in the sense of Baouendi, Ebenfelt and
Rothschild [BER1] in a slightly different but equivalent way:

Definition 2.9. Let M⊂Cn be a real-analytic submanifold and (U, �) be a defining
function. Then the Segre sets are defined inductively by Q1

w :=Qw, Qs+1
w :=RM (Qs

w)=⋃
{Qz :z∈Qs

w}.

In general the Segre sets are not analytic. However, if U is sufficiently small, they
are finite unions of (not necessarily closed) complex submanifolds. A useful tool for our
purposes is given by the following criterion (see [BER1], [BER4]):

Theorem 2.10 (Baouendi, Ebenfelt, Rothschild). Let M⊂Cn be a generic real-
analytic submanifold and x∈M . Then M is of finite type at x if and only if there exists
an integer 2�s�codim M+1 such that for every defining function (U, �) with x∈U , the
s-th Segre set Qs

x contains an open subset of Cn.

2.6. Levi orthogonality and the inner reflection. Let M⊂Cn be a CR-submanifold
and x∈M be an arbitrary point. Recall that a (1, 0)-vector field on M is a vector field X

in the complexification CT cM=C⊗RT cM such that JX= iX, where J :CT cM→CT cM

is the complexification of the CR-structure J :T cM→T cM , and iX is the multiplication
by i in the component C of the tensor product.

The Levi form of M at x is the Hermitian (vector-valued) form

L=LM,x:T 1,0
x M×T 1,0

x M →CTxM/CT c
xM, (6)

defined by

LM,a(u, v) :=
1
2i

π([X,�Y ]), (7)

where X and Y are (1, 0)-vector fields on M with X(a)=u, Y (a)=v and

π:CTxM →CTxM/CT c
xM (8)

is the canonical projection. Notice that the right-hand side of (7) depends only on u

and v, and not on their extensions X and Y as (1, 0)-vector fields.
If (U, �) is a defining function for M , the Levi form satisfies the following identity

(see e.g. [Bo]):

−dp(LM,x(u, v))=
∑
j,k

∂2�

∂zj ∂z̄k
(x)uj v̄k. (9)
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We use (9) to derive a connection between the Levi orthogonality as defined by (3)
and the inner reflection in §2.4. For every subset A⊂U and a point a∈A, denote by TaA

the Whitney tangent cone, i.e. the set of all possible limits of sequences (am−a)/cm with
cm∈R+ and am∈A such that am→a as m→∞. Then the connection between (4) and
(3) can be stated as

Proposition 2.11. Let M⊂Cn be a real-analytic CR-submanifold, x∈M and x∈
A⊂Qx. Then TxrM (A)⊂(TxA)⊥.

Proof. Since TxA⊂TxQx and TxQx=T c
xM by Proposition 2.5, the Levi-orthogonal

complement (TxA)⊥ makes sense. We have to prove that L(u, v)=0 for every u∈TxA

and v∈TxrM (A).
For this, consider sequences bm, ck∈R+, am∈A and rk∈rM (A) such that am→x,

(am−x)/bm→u as m→∞, and (rk−x)/ck→v, rk→x as k→∞. By definition of rM (A),
�(am, r̄k)=0 for all m and k. This implies

∂�(x, r̄k)(u)= lim
m→∞

�(am, r̄k)−�(x, r̄k)
bm

=0

for every k, and, further,

∂∂̄�(x, x̄)(u, v)= lim
k→∞

∂�(x, r̄k)(u)−∂�(x, x̄)(u)
bm

=0.

The required statement follows from (9). �

3. Holomorphic and algebraic families

3.1. Notation. By saying “analytic” we shall always mean “complex-analytic”, and
by “dimension” the dimension over C. All submanifolds and analytic subsets without
further specification are supposed to be complex. The notion of algebraic subsets and
submanifolds extends in an obvious way to subsets of algebraic varieties more general
than Cn, e.g. of the jet spaces introduced in §4.

3.2. Definitions of families and their basic properties. In the following let U and V

be connected complex manifolds and F⊂U×V be an arbitrary submanifold. It will be
useful for our purposes to have the following notion.

Definition 3.1. We call the triple (U, V, F ) a holomorphic family , if there exist con-
nected complex manifolds V1 and V2, a biholomorphism Φ:V →V1×V2 and a holomorphic
map ϕ:U×V1→V2 such that

(idU×Φ)(F )= {(u, v1, v2)∈U×V1×V2 : v2 =ϕ(u, v1)}.
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If in addition U , V , V1, V2 are open subsets of some smooth algebraic varieties, and ϕ and
Φ are algebraic maps, we call F an algebraic family. We write Fu :={v∈V : (u, v)∈F}⊂V ,
u∈U , for the fibers of F .

Elementary examples. For arbitrary U and V , F :=U×V defines an obvious holo-
morphic family (U, V, F ). Another extremal case is F :=U×{v}, where v∈V is arbitrary.
More generally, if V =V1×V2 for some manifolds V1 and V2, we obtain a holomorphic fam-
ily (U, V, F ) by setting F :=U×V1. These are examples of families with constant fibers.
Another type of examples can be obtained by taking a holomorphic map f :U→V and
setting F :={(u, f(u)) :u∈U}⊂U×V . Here the fibers Fu={f(u)} are one-point sets but
their dependence on u is obviously not necessarily constant. Families of this type can be
generalized to families of linear subspaces by setting F :={(u, v1, A(u)v1)}⊂U×V1×V2,
where V1 and V2 are linear spaces, and A is a holomorphic map from U into the space
L(V1, V2) of linear operators.

Remark. It follows immediately from the definition that all fibers are closed con-
nected submanifolds of the same dimension. However, the converse does not hold as is
shown in the following example. Set U :=C, V :=C2 and define

F := {(u, v1, v2) : u2v2 = v2
1+u}.

Clearly F is a smooth algebraic hypersurface in U×V and every fiber Fu, u∈U , is a
smooth algebraic hypersurface in V . However, (U, V, F ) is not a holomorphic family, e.g.
because of Lemma 3.2 below. Moreover, there do not exist open neighborhoods Ũ⊂U

and Ṽ⊂V of the origins such that (Ũ , Ṽ , F∩(Ũ×Ṽ )) is a holomorphic family.

The following is an elementary consequence of the rank theorem.

Lemma 3.2. In the above notation fix a point x=(u, v)∈F⊂U×V . Then the fol-
lowing are equivalent :

(i) There exist open subsets Ũ⊂U , Ṽ⊂V such that x∈ Ũ×Ṽ and (Ũ , Ṽ , F∩(Ũ×Ṽ ))
is a holomorphic family ;

(ii) The natural projection πF,U :F→U is submersive at x, i.e. dπF,U :TxF→TuU

is surjective.
The same statement holds also in the algebraic category.

We use the following elementary criterion of genericity that is proved here for the
reader’s convenience.

Proposition 3.3. Let M⊂Cn be a real-analytic submanifold given by a defining
function �(z, z̄) in a neighborhood of x∈M . Then M is generic at x if and only if
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there exist open neighborhoods U(x), V (x)⊂U such that (U(x), V (x), F ) is a holomorphic
family, where

F :=M∩(U(x)×V (x))= {(z, �w)∈U(x)×V (x) : �(z, �w)= 0}.

If M is in addition algebraic, the family (U(x), V (x), F ) can be chosen algebraic.

Proof. Let M be generic at x, i.e. TxM+ iTxM=TxU . Then every vector u∈TxU

can be written in the form u=a+ib with a, b∈TxM , i.e. d�(a, ā)=d�(b, b̄)=0 or equiva-
lently (a, ā), (b, b̄)∈T(x,x̄)M. Since M is a complex submanifold, ξ :=(u, ā+ib̄)∈T(x,x̄)M
with dπU (ξ)=u, where πU :M→U is the projection. Since u∈TxU is arbitrary, πU is sub-
mersive at (x, x̄) and the claim follows from Lemma 3.2.

Conversely, if (U(x), V (x), F ) is a holomorphic family, then πU :M→U is submersive
at (x, x̄) by Lemma 3.2. This means that for every u∈TxU there exists a preimage ξ=
(u, v̄)∈T(x,x̄)M. Then we can write it in the form ξ=(a, ā)+i(b, b̄), where a:=(u+v)/2
and b:=(u−v)/2i. Since ξ is tangent to M, we obtain

0= d�(ξ)= ∂�(a, ā)+i∂�(b, b̄)+∂̄�(a, ā)+i∂̄�(b, b̄)= d�(a, ā)+id�(b, b̄). (10)

Since M is complex, iξ is also tangent to it and we similarly obtain dp(a)−idp(b)=0.
Together with (10) this yields a, b∈TxM , i.e. u=a+ib∈TxM+iTxM . Since u∈TxCn is
arbitrary, this shows that TxM+iTxM=TxU , i.e. the required genericity.

Finally, if M is algebraic, � can be chosen holomorphic algebraic. This implies the
algebraicity of M, and the statement follows from the algebraic version of Lemma 3.2. �

We shall use the following general construction.

Lemma 3.4. Let U and V be algebraic submanifolds of some CN, S⊂U×V be an
algebraic subset and M⊂U×V a nonempty real-analytic submanifold with M⊂S. Then
there exist an algebraic submanifold N⊂U , a finite collection of open subsets V1, ...,Vs⊂V

and a nonempty open subset W⊂M with the following properties:
(i) (N,Vj , S∩(N×Vj)) is an algebraic family for every j=1, ..., s;
(ii) W⊂N×V ;
(iii) For every (u, v)∈W , every local irreducible component at v of the fiber Su⊂V

intersects Vj for some j=1, ..., s.

Proof. We prove the statement by induction on dimS. It is clear for S discrete.
Denote by π :=πS,U :S→U the standard projection. Without loss of generality, M is
connected. Let S1⊂S be the (algebraic) Zariski closure of M . After replacing U with a
submanifold, and M and S with M∩(U×V ) and S∩(U×V ) respectively, we may assume
that U coincides with π(S1) and is connected and smooth. Let d(x):=dimx π−1(π(x))
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denote the fiber dimension. Since d(x) is upper semicontinuous, we may assume that it
is constant and equal to d on S1 and is not larger on S by further shrinking U and V .
Then dim π−1(u)=d for every u∈U . In particular, dimS=dimU+d.

Every irreducible component of S where the generic value of d(x) is lower than d

must be of lower dimension than dimS. Denote by S′ the union of S-components of the
highest dimension containing M , and by S′′ the union of lower-dimensional S-components
containing M . By further shrinking U and V we may assume that S=S′∪S′′ and M⊂
S′∩S′′. Fix x∈M . Since S′ is pure-dimensional with π-fibers of the same dimension,
there exist open connected neighborhoods O(x)⊂S′, U(π(x))⊂U and E(0)⊂Cd such
that the restriction π |O(x) can be written as a composition P �H, where H:O(x)→
U(π(x))×E(0) is a finite branched holomorphic covering and P :U(π(x))×E(0)→U(π(x))
is the natural projection (see [G, Volume II, Theorem L.8]).

For the dimension reason there exists a point u0∈U(π(x)) such that u0×E(0) is not
contained in the branch locus of H. Since M is Zariski dense in S1, π(M) is Zariski dense
in U , and therefore u0 can be chosen in π(M)∩U(π(x)), i.e. (u0, v0)∈M for some v0∈V .
Let (u0, e0) be a point outside the branch locus and H−1(u0, e0)={(u0, v1), ..., (u0, vl)}⊂
O(x)⊂S′, where l is the branch number of H. Then the points (u0, vj)∈S′ satisfy the
condition (ii) of Lemma 3.2. Hence there exist neighborhoods Vj of vj (j=1, ..., l) such
that (U, Vj , S

′∩(U×Vj)) become algebraic families after appropriate shrinking of U . By
the construction, a version of property (iii) is satisfied for these families, where (u, v)∈M

is close to (u0, v0) and the fibers S′
u (rather than Su) are considered. Since S=S′∪S′′, it

remains to construct additional families for the fibers S′′
u . But this can be done by using

the induction because dim S′′<dim S. �

Given two holomorphic families (U, V, F ) and (V,W,G), we define their composition
(U, V ×W,H ) as follows:

H := {(u, v, w)∈U×V ×W : (u, v)∈F, (v, w)∈G}. (11)

As a direct consequence of the definition, the composition of holomorphic (resp. algebraic)
families is always holomorphic (resp. algebraic).

The notion of genericity can be trivially extended to the case when M is a real
submanifold of an arbitrary complex manifold X. This condition implies, in particular,
that M cannot be contained in a proper analytic subset of X. We use this simple
observation in the following lemma.

Lemma 3.5. Let (U, V, F ) be a holomorphic family, M⊂F a nonempty generic real-
analytic submanifold, V ′ another complex manifold and f :V →V ′ a holomorphic map.
Then there exist domains Ũ⊂U , Ṽ⊂V and Ṽ ′⊂V ′ such that the following is satisfied :
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(1) M∩(Ũ×Ṽ ) �=∅;
(2) f(Ṽ )⊂Ṽ ′;
(3) (Ũ , Ṽ ′, F̃ ) is a holomorphic family, where

F̃ := {(u, f(v)) : u∈ Ũ , v∈ Ṽ , (u, v)∈F}.

Remark. An algebraic version of Lemma 3.5 holds with the same proof but we do
not use it in this paper.

Proof. Set g :=(idU×f ):F→U×V ′. Since M⊂F is generic, it is not contained in the
analytic subset defined by the degeneration of the rank of g. Hence there exist domains
Ũ⊂U and Ṽ⊂V such that property (1) holds, g is of constant rank on F∩(Ũ×Ṽ ) and
F ′ :=g(F∩(Ũ×Ṽ )) is a submanifold in U×V ′. Fix x∈M∩(Ũ×Ṽ ). By Lemma 3.2,
πF,Ũ is submersive at x. Hence πF ′,Ũ is submersive at g(x). By the other direction of

Lemma 3.2, we can replace Ũ with a smaller domain and find a domain Ṽ ′⊂V ′ such that
g(x)∈ Ũ×Ṽ ′ and (Ũ , Ṽ ′, F ′∩(Ũ×Ṽ ′)) is a holomorphic family. It remains to replace Ṽ

with Ṽ ∩f−1(Ṽ ′). �

3.3. Constructions with families and their fibers. Let U , U ′, V be connected complex
manifolds, and F⊂U×V , F ′⊂U ′×V arbitrary subsets. Define

A(F,F ′) := {(u, u′ )∈U×U ′ : Fu⊂F ′
u′}. (12)

In general A(F,F ′) is not analytic, even if both F and F ′ are analytic. This is the
case, however, if F is a holomorphic family as defined before.

Lemma 3.6. Let (U, V, F ) be a holomorphic (resp. algebraic) family and F ′⊂U ′×V

be a closed analytic (resp. algebraic) subset. Then A(F,F ′)⊂U×U ′ is a closed analytic
(resp. algebraic) subset.

Proof. Let V1, V2, Φ:V →V1×V2 and ϕ:U×V1→V2 be as in Definition 3.1. Let
(u0, u

′
0)∈U×U ′, (v0)1∈V1 be arbitrary points and (v0)2 :=ϕ(u0, (v0)1). It is sufficient to

prove that A(F,F ′) is analytic (resp. algebraic) in a neighborhood of (u0, u
′
0). Since F ′ is

analytic (resp. algebraic), it is defined by the vanishing of holomorphic (resp. algebraic)
functions f1, ..., fs in a neighborhood of (u′

0, v0)∈U ′×V , where v0 :=((v0)1, (v0)2). Then
for (u, u′)∈U×U ′ close to (u0, u

′
0), (u, u′)∈A(F,F ′) is equivalent to the vanishing of

fi(u′,Φ−1(v1, ϕ(u, v1))) for all v1∈V1 near (v0)1, because V1 is connected. The statement
follows by the analyticity (resp. algebraicity) of this condition of vanishing. �

For arbitrary subsets A⊂U×U ′ and G⊂U ′×V define

Bu(A,G) :=
⋂

u′∈Au

Gu′ , u∈U, (13)

B(A,G) := {(u, v)∈U×V : v∈Bu(A,G)} (14)

(in the case Au=∅ we set Bu(A,G):=V ).
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Lemma 3.7. Let (U,U ′, A) be a holomorphic (resp. algebraic) family and G⊂U ′×V

a closed analytic (resp. algebraic) subset. Then B(A,G)⊂U×V is a closed analytic (resp.
algebraic) subset.

Proof. By Definition 3.1, there exist a biholomorphism (resp. algebraic biholomor-
phism) Φ:U ′→U ′

1×U ′
2 and a holomorphic (resp. algebraic) map ϕ:U×U ′

1→U ′
2 such that

(idU×Φ)(A)= {(u, u′
1, u

′
2)∈U×U ′

1×U ′
2 : u′

2 =ϕ(u, u′
1)}.

Let (u0, v0)∈U×V and (u′
0)1∈U ′

1 be arbitrary, (u′
0)2 :=ϕ(u, (u′

0)1). It is sufficient to show
that B(A,G) is analytic (resp. algebraic) in a neighborhood of (u0, v0). Since G is analytic
(resp. algebraic), it is locally defined by the vanishing of holomorphic (resp. algebraic)
functions f1, ..., fs in a neighborhood of (u′

0, v0)∈U ′×V , where u′
0 :=((u′

0)1, (u
′
0)2). Then

for (u, v) close to (u0, v0), the condition (u, v)∈B(A,G) is equivalent to the vanishing
of fj(Φ−1(u′

1, ϕ(u, u′
1)), v) for all j=1, ..., s, and u′

1∈U ′
1 close to (u′

0)1, because U ′
1 is

connected. The last condition is analytic (resp. algebraic) which proves the statement. �

4. Jets of holomorphic maps and jets of complex submanifolds

4.1. Constructions of jets. Let X,X ′ be connected complex manifolds, x∈X and let
k�0 be an integer. Recall that a k-jet at x of a holomorphic map from X into X ′ is
an equivalence class of holomorphic maps from a neighborhood of x in X into X ′ with
fixed partial derivatives at x up to order k. Denote by Jk

x (X,X ′) the space of all such
k-jets. The union Jk(X,X ′):=

⋃
x∈X Jk

x (X,X ′) carries a natural fiber bundle structure
over X. For f a holomorphic map from a neighborhood of x in X into X ′, denote by
jk
xf∈Jk

x (X,X ′) the corresponding k-jet. If X and X ′ are smooth algebraic varieties,
Jk

x (X,X ′) and Jk(X,X ′) are also of this type.
Furthermore, we shall need the k-jets of d-dimensional submanifolds. Let Cd

x(X)
be the set of all germs at x of d-dimensional submanifolds of X. We say that two
germs V, V ′∈Cd

x(X) are k-equivalent, if, in a local coordinate neighborhood of x of the
form U1×U2, V and V ′ can be given as graphs of holomorphic maps ϕ,ϕ′:U1→U2 such
that jk

x1
ϕ=jk

x1
ϕ′, where x=(x1, x2)∈U1×U2. Denote by Jk,d

x (X) the space of all k-
equivalence classes at x and by Jk,d(X) the union

⋃
x∈X Jk,d(X) with the natural fiber

bundle structure over X. Furthermore, for V∈Cd
x(X), denote by jk

x(V )∈Jk,d
x (X) the

corresponding k-jet. For g∈Jk,d(X) we use the notation g(0):=x, if g is a k-jet at x.
If X is a smooth algebraic variety, Jk,d

x (X) and Jk,d(X) are also of this type.

4.2. Jet compositions. Let g∈Jk,d(X) and j∈Jk(X,X ′) be k-jets at some x∈X

represented by a d-dimensional submanifold V∈Cd
x(X) and a local holomorphic map
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f :U(x)→X ′ respectively. Our goal here will be to define a composing map (j, g) 	→j�g

sending (jk
xf, jk

xV ) into jk
f(x)f(V ).

Warning. Even in the simplest nontrivial case X=X ′=C2, k=d=1, a map c:
J1

x(C2,C2)×J1,1
x (C2)→J1,1

x (C2) with jk
f(x)f(V )=c(jk

xf, jk
xV ), whenever f(V ) is smooth

at x, need not exist. Indeed, take x=(0, 0), f(z, w):=(z2, w) and V :={w=az2}, where
a∈C is arbitrary. Then f(V )={w′=az′}. Clearly j1

0f(V ) depends on a, but jk
0 f and

jk
0V do not.

In view of this we construct a composing map for k�1, defined on the subset

R := {(j, g)∈Jk(X,X ′)×Jk,d(X) : j(0)= g(0), dim(l(j)� l(g))= d}, (15)

where l(j) and l(g) denote the linear parts of j and g respectively.

Lemma 4.1. There exists exactly one holomorphic mapping c:R→Jk,d(X ′) such
that jk

f(x)f(V )=c(jk
xf, jk

xV ), whenever x, V and f are as before and (jk
xf, jk

xV )∈R.
If X and X ′ are algebraic, then c is also algebraic.

Proof. Fix (j0, g0)∈R and their representatives f0 and V0. There exists a coordinate
neighborhood U1×U2 near x0 :=g0(0)=j0(0) such that V0=U1×{(x0)2}. Without loss
of generality, x0=(0, 0).

Since dim(l(j0)� l(g0))=d, there exists a coordinate neighborhood U ′
1×U ′

2 near
x′

0 :=j0(x0) such that the map u1 	→(f0)1(u1, 0) is locally invertible at 0, where (f0)1
denotes the first component. Then the map hf :u1 	→f1(u1, 0) is locally invertible at j(0)
for every j∈Jk(X,X ′) sufficiently close to j0 and its representative f .

Denote by h−1
f the local inverse near j(0). Without loss of generality, g is represented

by the graph V of a holomorphic map sV :U1→U2. Then f(V ) equals the graph of the
map ϕf,V :=f2�(h−1

f , sV �h
−1
f ). The k-jet jk

j(x)f(V ) is given by the derivatives of ϕf,V

at j(0) up to order k. Hence jk
j(x)f(V ) depends only on j and g, and we can write

jk
j(x)f(V )=:c(j, g). Clearly c(j, g) is holomorphic in (j, g)∈R. If X and X ′ are algebraic,

all constructions can be done algebraically. �

4.3. The inclusion relation for the jets of complex submanifolds. Our next goal will
be to define an inclusion relation and prove its analyticity (resp. algebraicity), if the
ambient space X is an analytic (resp. an algebraic) submanifold of Cn.

Definition 4.2. Let 0�d�d′ be integers, g∈Jk,d(X) and g′∈Jk,d′
(X) be arbitrary

k-jets. We say that g is contained in g′ and write g⊂g′, if g(0)=g′(0) and there exist
representatives V∈g and V ′∈g′ such that V⊂V ′.
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Lemma 4.3. Define

I := {(g, g′)∈Jk,d(X)×Jk,d′
(X) : g⊂ g′}. (16)

Then I⊂Jk,d(X)×Jk,d′
(X) is a closed analytic subset. If X is an algebraic submanifold

of Cn, then I is an algebraic subset of Jk,d(Cn)×Jk,d′
(Cn).

Proof. Let (g0, g
′
0)∈Jk,d(X)×Jk,d′

(X) be arbitrary. It is sufficient to prove that I

is analytic (resp. algebraic) in a neighborhood of (g0, g
′
0). Without loss of generality,

g0(0)=g′0(0)=:x0 and d′>d>0. Let V0∈Cd
x0

(X), V ′
0∈Cd′

x0
(X) be representatives of g0 and

g′0 respectively. Then there exists a coordinate neighborhood U1×U2×U3 of x0 in X

such that V0 is locally the graph of a holomorphic map U1→U2×U3 and V ′
0 is locally the

graph of a holomorphic map U1×U2→U3.
Every jet g∈Jk,d(X) that is sufficiently close to g0 can be represented by the

graph of a unique polynomial map ϕg:U1→U2×U3 of degree k. Similarly every jet
g′∈Jk,d′

(X) that is close to g′0 can be represented by the graph of a unique polynomial
map ψg′:U1×U2→U3 of degree k. The coefficients of polynomials can be seen as coor-
dinates in the corresponding jet spaces. Every other representative of g (resp. of g′) is
locally a graph of a holomorphic map ϕ̃g:U1→U2×U3 (resp. ψ̃g′:U1×U2→U3) such that

jk
x1

ϕg = jk
x1

ϕ̃g (resp. jk
(x′

1,x
′
2)

ψg′ = jk
(x′

1,x
′
2)

ψ̃g′), (17)

where x=(x1, x2, x3):=g(0) (resp. x′=(x′
1, x

′
2, x

′
3):=g′(0)).

By Definition 4.2, g⊂g′ means x=x′ and the existence of ϕ̃g and ψ̃g′ such that

(ϕ̃g(u1))3 = ψ̃g′(u1, (ϕ̃g(u1))2).

By differentiating at x1 up to the order k, we obtain

jk
x1

(ϕ̃g)3 =(jk
(x1,x2)

ψ̃g′)�(id, jk
x1

(ϕ̃g)2).

By (17), this is equivalent to

jk
x1

(ϕg)3 =(jk
(x1,x2)

ψg′)�(id, jk
x1

(ϕg)2). (18)

We have showed that the inclusion g⊂g′ implies x=x′ and (18). Conversely, suppose
that (18) holds. This means that the graph V of the map

u1 	→ ((ϕg(u1))2, ψg′(u1, (ϕg(u1))2))

is a representative of g. Clearly V is a subset of the graph of ψg′ . Hence g⊂g′.
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Thus we have proved that the inclusion g⊂g′ is equivalent to x=x′ and (18). Since
(18) is an algebraic condition on the coefficients of ϕg and ψg′ , I is algebraic in the given
coordinates near (g0, g

′
0). This finishes the proof. �

4.4. Operations with jets and families of analytic subsets. Let (U, V, F ) and
(U ′, V ′, F ′) be holomorphic or algebraic families such that V is an open subset of V ′.
Analogously to A(F,F ′) define

Ak(F,F ′) := {(u, v, u′)∈U×V ×U ′ : (u, v)∈F, (u′, v)∈F ′, jk
v Fu⊂ jk

v F ′
u′}. (19)

Then Ak(F,F ′) is the preimage of I (defined by (16)) under the holomorphic (resp.
algebraic) map (u, v, u′) 	→(jk

v Fu, jk
v F ′

u′), defined on the subset

Ã(F,F ′) := {(u, v, u′)∈U×V ×U ′ : (u, v)∈F, (u′, v)∈F ′}.

As a consequence of Lemma 4.3 we obtain

Lemma 4.4. Let (U, V, F ) and (U ′, V ′, F ′) be holomorphic (resp. algebraic) families,
where V is an open subset of V ′. Then Ak(F,F ′)⊂U×V ×U ′ is a closed analytic (resp.
algebraic) subset.

It follows that Ak
u,v(F,F ′)⊃Ak+1

u,v (F,F ′) for all integers k�0. Since the fibers Fu⊂V ,
u∈U , are connected, inclusions of their k-jets for all k imply inclusions of the fibers, i.e.
Au(F,F ′)=

⋂
k Ak

u,v(F,F ′) for all u∈U and v∈Fu. Therefore

π−1(A(F,F ′))=
⋂

k�0

Ak(F,F ′), (20)

where π: Ã(F,F ′)→U×U ′ denotes the natural projection.

Lemma 4.5. Let (U, V, F ) and (U ′, V ′, F ′) be holomorphic families such that V

is an open subset of V ′, and (u, v)∈F , (u′, v)∈F ′ be such that Fu⊂F ′
u′ . Then there

exist domains Ũ⊂U , Ũ ′⊂U ′, Ṽ⊂Ṽ ′⊂V and an integer k�0 such that the following is
satisfied :

(1) (u, v)∈ Ũ×Ṽ and (u′, v)∈ Ũ ′×Ṽ ;
(2) (Ũ , Ṽ , F̃ ) and (Ũ ′, Ṽ ′, F̃ ′) are holomorphic families, where F̃ :=F∩(Ũ×Ṽ ) and

F̃ ′:=F ′∩(Ũ ′×Ṽ ′);
(3) π−1(A(F̃ , F̃ ′))=Ak(F̃ , F̃ ′).

Proof. By (20), π−1(A(F,F ′)) equals the intersection of the decreasing sequence
of analytic subsets Ak(F,F ′), k�0. Hence this sequence stabilizes after some k�0 in
the sense of germs at (u, v, u′). This means that we can choose an integer k�0 and a
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neighborhood W1=U1×V1×U ′
1 of (u, v, u′) in U×V ×U ′ such that π−1(A(F,F ′))∩W1=

Ak(F,F ′)∩W1. By Lemma 3.2, there exists domains Ũ ′⊂U ′
1 and Ṽ ′⊂V1 satisfying

conditions (1) and (2). The proof is completed by applying Lemma 3.2 to (u, v)∈
F∩(U1×Ṽ ′). �

For 0�d�dim V , define

Ak,d(F ) := {(g, u)∈Jk,d(V )×U : g(0)∈Fu, g⊂ jk
g(0)Fu}. (21)

Lemma 4.6. Let (U, V, F ) be a holomorphic (resp. algebraic) family. Then Ak,d(F )
is a closed analytic (resp. algebraic) subset of Jk,d(V )×U .

Proof. Set d′:=dim Fu, u∈U . The subset Ak,d(F )⊂Jk,d(V )×U is the preimage of I

given by (16) under the holomorphic (resp. algebraic) map (g, u) 	→(g, jk
g(0)Fu), defined

on the subset {(g, u)∈Jk,d(V )×U : g(0)∈Fu}. �

5. Proof of Theorem 1.1

5.1. Reflections of jets of holomorphic maps. The following proposition is an important
part of the proof of Theorem 1.1. We use the notation of §1. Roughly speaking, it shows
under the assumptions of Theorem 1.1 that the restriction of f to a Segre variety of M

is algebraically determined by two different k-jets of f . Set

M2 := {ξ =(z1, �w, z)∈U×�U×U : (z1, �w)∈M, (z, �w)∈M}. (22)

Proposition 5.1. Let f :U→Cn′
be a local holomorphism between connected real-

algebraic submanifolds M⊂Cn and M ′⊂Cn′
. Suppose that M is generic and condition

(ii) in Theorem 1.1 is satisfied. Then there exist a point x∈M , an open neighborhood
Σ of (x, x̄, x) in M2 and an integer k such that for every nonempty open subset Σ′⊂Σ
there exists another nonempty open subset Σ′′⊂Σ′ and an algebraic holomorphic map
Ψ:Ω→Cn′

defined in an open subset Ω⊂U×Jk(Cn,Cn′)×Jk(Cn,Cn′
) with

(z1, jk
wf, jk

z f )∈Ω and f(z1)=Ψ(z1, jk
wf, jk

z f ) (23)

for all (z1, w, z)∈Σ′′.

Proof. By shrinking U , we may assume that condition (ii) in Theorem 1.1 holds
for all x∈M∩U . By Proposition 3.3, there exist neighborhoods Ũ , Ṽ⊂U of x such that
(Ũ , Ṽ ,M∩(Ũ×Ṽ )) is an algebraic family.

By the construction, the image of M∩U under the diagonal mapping z 	→(z, z̄) is a
generic submanifold of M. By Lemma 3.5, there exist domains Ũ1⊂ Ũ , Ṽ1⊂ Ṽ , Ṽ ′

1⊂Ṽ ′
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and a point x0∈M∩Ũ1∩Ṽ1 such that f(Ṽ1)⊂Ṽ ′
1 and (Ũ1, Ṽ ′

1, F ) is a holomorphic family,
where

F := {(z, f̄(�w)) : z∈ Ũ1, w∈Qz∩Ṽ1}. (24)

Without loss of generality we can assume that U= Ũ1 and M′⊂U ′×Ṽ ′
1. Set for

simplicity V :=Ṽ1, V ′ :=Ṽ ′
1. By Definition 3.1, f(Qz)⊂V ′ is a connected submanifold

whose dimension is constant independently of z∈U . Set d :=dim f(Qz). Then the jet
jk
w′f(Qz)∈Jk,d(V ′) is defined for w′∈f(Qz). We now consider the subsets A(F,M′)⊂

U×U ′, Ak(F,M′)⊂U×V ′×U ′ and Ak,d(M′)⊂Jk,d(V ′)×U ′ as defined by (12), (19) and
(21) respectively. For the reader’s convenience, we recall the constructions in our case:

A(F,M′) := {(z, z′)∈U×U ′ : f(Qz)⊂Q′
z′},

Ak(F,M′) := {(z, �w′, z′)∈U×V ′×U ′ : w′∈f(Qz), w′∈Q′
z′ , jk

w′(f(Qz))⊂ jk
w′Q′

z′},

Ak,d(M′) := {(ḡ, z′)∈Jk,d(V ′)×U ′ : g(0)∈Q′
z′ , g⊂ jk

g(0)Q
′
z′}.

By Lemmata 3.6, 4.4 and 4.6, these subsets are closed and analytic, Ak,d(M′) is even
algebraic.

We write

Az(F,M′) := {z′∈U ′ : f(Qz)⊂Q′
z′}, z∈U,

Ak
z,�w′(F,M′) := {z′∈U ′ : w′∈Q′

z′ , jk
w′(f(Qz))⊂ jk

w′Q′
z′}, z∈U, w′∈ f(Qz),

Ak,d
ḡ (M′) := {z′∈U ′ : g(0)∈Q′

z′ , g⊂ jk
g(0)Q

′
z′}, ḡ∈Jk,d(V ′),

for the corresponding fibers.
It follows from Proposition 2.4 and the construction that

Ak
z,f̄(�w)(F,M′)=Ak,d

ḡ(z,�w)(M
′), (25)

where
ḡ(z, �w) := jk

f(w)f(Qz)∈Jk,d(V ′). (26)

Fix x∈M . By Lemma 4.5,

Ak
z,f̄(�w)(F,M′)=Az(F,M′)

for k sufficiently large and (z, �w)∈M close to (x, x̄). By replacing U with a smaller
neighborhood of x, we may assume that this holds for all (z, �w)∈M. Together with (25)
the last identity implies

Ak,d
g(z,�w)(M

′)= {z′∈U ′ : Q′
z′⊃f(Qz)}. (27)
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Since f(Qx) is a connected manifold, it follows from Definition 2.6 that

rx = germ of Ak,d
g(x,x̄)(M

′) at f(x) (28)

for all x∈M∩U .
By replacing U, V with smaller neighborhoods of x, we may assume that (27) holds

for all (z, �w)∈M. Furthermore we can choose U and V such that all Segre varieties Qz⊂V

become connected for z∈U . By the invariance of Segre varieties (Proposition 2.4) and
the connectedness of Qz, Q′

f(z)⊃f(Qz), i.e. the right-hand side of (27) contains the point
f(z)∈U ′. Hence

f(z)∈Ak,d
ḡ(z,�w)(M

′) for all (z, �w)∈M. (29)

Set
M̃ := {(ḡ(z, �w), f(z)) : (z, �w)∈M} and M̃ := {(ḡ(z, z̄), f(z)) : z∈M}.

Then M̃ is a real-analytic submanifold of Jk,d(V ′)×U ′. By (29), it is contained in the
algebraic subset Ak,d(M′)⊂Jk,d(V ′)×U ′. Hence we are in the situation of Lemma 3.4
with S=Ak,d(M′). Let U ′

1, ..., U
′
s⊂U ′, W∈M̃ be open subsets and N⊂Jk,d(V ′) be an

algebraic submanifold given by Lemma 3.4.
We write for simplicity

Gj :=Ak,d(M′)∩(N×U ′
j ), j =1, ..., s.

In the following we use the notation of §3.3. Define

Bj
g := Bḡ(Gj,M′)=

⋂
{Q′

z′ : z′∈Gj
ḡ}, Bg :=B1

g∩ ...∩Bs
g

and
B := {(g, z′)∈�N×V ′ : z′∈Bg}.

By Lemma 3.7, B⊂�N×V ′ is a closed algebraic subset.
Since Gj⊂Ak,d(M′) for every j=1, ..., s, it follows from (27) that

f(Qz)⊂
⋂
{Q′

z′ : z′∈Ak,d
g(z̄,w)(M

′)}⊂Bg(z̄,w) for all (z̄, w)∈M. (30)

In particular, for every x∈M∩U , f(x)∈Bg(x̄,x).
On the other hand, property (iii) in Lemma 3.4 in our situation means that for every

x∈M∩U , every local irreducible component of Ak,d
g(x̄,x)(M) at f(x) intersects Gj

g(x̄,x) for
some j=1, ..., s. Now we use the simple fact that the intersection of Q′

z′ for all z′ in an
irreducible analytic set A coincides with the intersection of Q′

z′ for z′ in an open subset
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of A. Using this fact for the local irreducible components of Ak,d
g(x̄,x)(M) at f(x) we

conclude that
r2
x ⊃ germ of Bg(x̄,x) at f(x) (31)

for all x∈M∩U . Here the inclusion instead of the equality is due to the fact that the
sets Gj may have some additional irreducible components.

By Proposition 2.3, (z, �w)∈M is equivalent to (w, z̄)∈M for z, w∈U∩V . Then we
can replace U and V with U∩V and rewrite (30) as

f(Qw)⊂Bg(�w,z) for all (z, �w)∈M. (32)

We also replace U ′ and V ′ with U ′∩V ′, set J1 :=Jk,d(V ′) and J2 :=Jk,d(V ′), and define

C := {(ḡ1, g2, z
′ )∈J1×J2×U ′ : z′∈Ak,d

ḡ1
(M)∩Bg2}.

Let ξ=(z1, �w, z)∈M2 be arbitrary. Then, by (29) and (32),

f(z1)∈C(ḡ(z1,�w),g(�w,z)) (33)

and, by (28) and (31),

rx∩r2
x ⊃ germ of C(ḡ(x,x̄),g(x̄,x)) at f(x) (34)

for all x∈M∩U . Together with condition (ii) in Theorem 1.1 this implies that f(x) is
isolated in C(ḡ(x,x̄),g(x̄,x)). Since C⊂J1×J2×U ′ is an algebraic subset, all fibers Cḡ1,g2

are discrete by the upper semicontinuity of the fiber dimension in a neighborhood of
every point of the form (ḡ(x, x̄), g(x̄, x), f(x)), x∈M∩U .

Without loss of generality, rankz(f |Qw)=d for all (z, �w)∈M. Fix x∈M∩U . Then
it follows from the rank theorem that there exists a coordinate neighborhood U1×U2⊂U

of x such that dim U1=d and

dim dzf(TzQ̃z,w)= d (35)

for all (z, �w)∈M close to (x, x̄), where

Q̃z,w := {v∈Qw : v2 =z2}.

Without loss of generality, U=U1×U2. Then for every (z, �w)∈M, (jk
z f, jk

z Q̃z,w) is con-
tained in R, where R is defined by (15). By Lemma 4.1,

jk
f(z)f(Qw)= c(jk

z f, jk
z Q̃z,w), (36)
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where c:R→Jk,d(X ′) is an algebraic holomorphic map.
Let Σ′⊂M2 be a nonempty open subset. By (33), the subset

Σ̃′ := {(ḡ(z1, �w), g(�w, z), f(z1)) : (z1, �w, z)∈Σ′}

is contained in the algebraic subset C⊂J1×J2×U ′. Let C ′⊂C denote the (algebraic)
Zariski closure of Σ̃′. Then there exists at least one point

(ḡ(z0
1 ,�w0), g(�w0, z0), f(z0

1))∈ Σ̃′

outside both the singular locus of C ′ and the branch locus of the projection to J1×J2.
Hence near this point, C ′ can be represented as a graph of an algebraic holomorphic
map ϕ:NJ→U ′, where NJ is an algebraic submanifold in J1×J2. Furthermore, in a
neighborhood of (ḡ(z0

1 ,�w0), g(�w0, z0)), ϕ can be extended to an algebraic holomorphic
map ψ: ΩJ→U ′, where ΩJ is an open subset in J1×J2. In particular, this means that

f(z1)=ψ(ḡ(z1, �w), g(�w, z)) (37)

holds for all (z1, �w, z)∈Σ′′ :={(z1, �w, z)∈Σ′ : (ḡ(z1, �w), g(�w, z))∈ΩJ}. Together with (26)
and (36) this yields

f(z1)=ψ
(
c(jk

wf, jk
wQ̃w,z1), c(j

k
z f, jk

z Q̃z,w)
)
.

By setting
Ψ(z1,�j1, j2) :=ψ

(
c(j1, jk

wQ̃w,z1), c(j2, j
k
z Q̃z,w)

)
,

where w :=j1(0) and z :=j2(0), we obtain an algebraic holomorphic map defined in a
neighborhood of p0 :=(z0

1 , jk
w0f, jk

z0f) in the submanifold

S :=
{
(z1,�j1, j2)∈U×Jk(Cn,Cn′)×Jk(Cn,Cn′

) :

(j1, jk
wQ̃w,z1)∈R, (j2, jk

z Q̃z,w)∈R
}
.

(38)

We finish the proof by extending Ψ as an algebraic holomorphic map to a neighborhood
Ω of p0 in U×Jk(Cn,Cn′)×Jk(Cn,Cn′

). �

5.2. Iterated complexifications and jet reflections. Our goal here will be to iterate
the construction of the previous section. Let M⊂Cn be a real-analytic submanifold and
(U, �(z, z̄)) be a defining function. For every integer j�0 set

Uj :=

{
U for j even,
�U for j odd,
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and

�j(ξj , ξj−1) :=

{
�(ξj , ξj−1) for j even,

�̄(ξj , ξj−1) for j odd.

Definition 5.2. The iterated complexifications Mq, q�1, of M are defined as follows:

Mq := {ξ =(ξq, ..., ξ0)∈Uq×...×U0 : �j(ξj , ξj−1)= 0 for all 1� j � q}. (39)

Then the Segre sets Qq
w=Qq

w(U, �) (see Definition 2.9) are equal to the corresponding
fibers or their conjugations as follows directly from the construction. We formulate this
as a lemma here. The proof is left to the reader.

Lemma 5.3. Set

Mq
w := {ξq∈Uq : ∃(ξq−1, ..., ξ1), (ξq, ..., ξ1, w)∈Mq}. (40)

Then Qq
w=Mq

w for q even and Qq
w=Mq

w for q odd, where w∈U is arbitrary.

The main disadvantage of the Segre sets is the lack of analyticity in general for q�2.
For this reason we prefer to deal with Mq instead.

Lemma 5.4. Let M⊂Cn be a generic real-analytic (resp. algebraic) submanifold.
Then for every q�1 and x∈M , Mq is a complex (resp. algebraic) submanifold of
U0×...×Uq near the point xq :=(x, x̄, x, ...). Furthermore, every projection πj :Mq→Uj

is of the maximal rank n at xq.

Proof. By Lemma 3.3, there exists neighborhoods U(x) and V (x) such that
(U(x), V (x),M∩(U(x)×V (x))) is a holomorphic (resp. algebraic) family. By the in-
duction on q we prove that there exists a product neighborhood

W(xq)=W1×W2 ⊂U0×(U1×...×Uq)

such that (W1,W2,Mq∩W(xq)) is a composition of q holomorphic (resp. algebraic) fam-
ilies in the sense of (11) and is therefore a holomorphic (resp. algebraic) family. This
proves the first statement and the second for j=0.

For j=q, consider the canonical involution τ :Uq×...×U0→U0×...×Uq defined by

τ(ξq, ..., ξ0) :=

{
(ξ0, ..., ξq) for q even,

(ξ̄0, ..., ξ̄q) for j odd.

Then τ(Mq)=Mq, and the last statement for j=q follows from the statement for the
case j=1. For 0<j<q it suffices to notice that Mq can be identified with the fiber
product of Mj and Mq−j over Uj . �

Given U ′⊂Cn′
we define U ′

j in a similar way as Uj . By differentiating the identity
in (23) we obtain
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Proposition 5.5. Under the assumptions of Proposition 5.1 there exist a point
x∈M , an open neighborhood Σ of (x, x̄, x) in M2 and an integer k such that for every
nonempty open subset Σ′⊂Σ there exists another nonempty open subset Σ′′⊂Σ′ and for
every integer s�0 an algebraic holomorphic map Ψs: Ωs→Js(U2, U

′
2) defined in an open

subset Ωs⊂U×Jk+s(Cn,Cn′)×Jk+s(Cn,Cn′
) with

(z1, j
k+s
w f, jk+s

z f)∈Ωs and jk
z1

f =Ψs(z1, j
k+s
w f, jk+s

z f) (41)

for all (z1, w, z)∈Σ′′.

For 0�j�q we use the notation

fj(z) :=

{
f(z) for j even,

f̄(z) for j odd.

In the following proposition we iterate the identity in (41).

Proposition 5.6. Under the assumptions of Proposition 5.1 for every q�2 and
s�0, there exists an integer l�1, a nonempty open subset E⊂Mq and an algebraic
holomorphic map Hs

q : Ωs
q→Js(Uq, U

′
q) defined in an open subset Ωs

q⊂E×J l(U1, U ′
1)×

J l(U0, U
′
0) with

(ξ, jl
ξ1

f̄ , jl
ξ0

f)∈Ωs
q and js

ξq
fq =Hs

q (ξ, jl
ξ1

f̄ , jl
ξ0

f) (42)

for all ξ∈E.

Proof. We prove the proposition by induction on q�2. For q=2 the statement fol-
lows from Proposition 5.5. Fix s�0 and q�3. Let k, x and Σ⊂M2 be given by Proposi-
tion 5.5. Choose neighborhoods U(x)⊂ Ũ(x)⊂U with M2∩(Ũ(x)×Ũ(x)× Ũ(x))⊂Σ and
such that Qz∩ Ũ(x) �=∅ for z∈U(x). The induction for q−1 applied to the real sub-
manifold M∩U(x)⊂Cn yields a nonempty open subset E1⊂Mq−1, an integer l�1 and
an algebraic holomorphic map Hs

q−1: Ω
s
q−1→Js(Uq−1, U

′
q−1) such that

js
ξq−1

fq−1 = Hs
q−1(ξ, j

l
ξ1

f̄ , jl
ξ0

f) (43)

for all ξ∈E1.
Furthermore, by the choice of U(x), the set

Σ′ := {(ξ2, ξ1, ξ0)∈Σ :∃(ξq, ..., ξ3), (ξq, ..., ξ1)∈�E1}

is nonempty. Proposition 5.5 yields another nonempty subset Σ′′⊂Σ′ and an algebraic
holomorphic map Ψ:Ω→Cn′

satisfying (41) for all (z1, w, z)∈Σ′′. By the construction
of Σ′, the open subset

E := {(ξq, ..., ξ0)∈Mq : (ξq, ..., ξ1)∈�E1, (ξ2, ξ1, ξ0)∈Σ′′}
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is also nonempty. Then for (ξq, ..., ξ0)∈E, (43) can be rewritten as

js
ξq

fq =Hs
q−1(ξ̄q, ..., ξ̄1, j

l
ξ2

f, jl
ξ1

f̄ ). (44)

To finish the proof, it remains to express jl
ξ2

f in terms of jl+k
ξ1

f̄ and jl+k
ξ0

f using (41),
and then to increase l by k. �

5.3. The end of the proof. Suppose that the assumptions of Theorem 1.1 are fulfilled.
Without loss of generality, M⊂U is generic and of finite type at every point. By the
criterion of Baouendi, Ebenfelt and Rothschild (Proposition 2.10), there exists q>0 such
that Mq

w contains an open subset of Cn for every w∈U .
Let E⊂Mq+1 be given by Proposition 5.6 and fix (χq+1, ..., χ0)∈E. Then the iden-

tity in (42) implies that the restriction of f to

Mq+1
χ1,χ0

:= {ξq+1 : ∃(ξq, ..., ξ2), (ξq+1, ..., ξ2, χ1, χ0)∈Mq+1}

is algebraic. Since Mq+1
χ1,χ0

=Mq
χ1 and the latter contains an open subset of Cn, f is itself

algebraic. This finishes the proof of Theorem 1.1.

Note added in the proof. After this paper was submitted for publication, the author
received the preprint “On the partial algebraicity of holomorphic mappings between real
algebraic sets” by J. Merker, containing related results.
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