Course 414 2007-08

Sheet 2

Due:	after	the	lecture	next	Monday

Exercise 1

Sketch the set of points give by the condition:

- (i) 1 < |z| < 2;
- (ii) 1 < |z+i| < 2;
- (iii) $\operatorname{Re}((1-i)\overline{z}) \ge 2.$

Exercise 2

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}$.

Exercise 3

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Ref = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 4

Give an example of a maximal open set $\Omega \subset \mathbb{C}$, where the given multiple-valued function has a holomorphic branch:

- (i) $z^{1/3}$;
- (ii) $\log(z+1);$
- (iii) $\sqrt{e^z}$.

Exercise 5

Let f be holomorphic in an open set $\Omega \subset \mathbb{C}$ and $\Phi: [0,1] \times [a,b] \to \Omega$ be a "homotopy of closed arcs", i.e. a continuous map such that $\Phi(t,a) = \Phi(t,b)$ for all $t \in [0,1]$. Show that $\int_{\gamma_0} f dz = \int_{\gamma_1} f dz$ where $\gamma_t(\lambda) := \Phi(t,\lambda)$. (Hint. Reduce to Cauchy's theorem for arcs homotopic with fixed endpoints.)