Course 414 2005-06

Sheet 6

Due: after the lecture beginning the next term

Exercise 1

Determine the type of singularity (removable, pole, essential or not isolated) and calculate the residue in case it is isolated:

(i) $f(z) = \frac{\sin z}{z - \pi}$ at $z_0 = \pi$; (ii) $f(z) = \frac{z}{\cos z - 1}$ at $z_0 = 0$; (iii) $f(z) = z^2 e^{-1/z^3}$ at $z_0 = 0$; (iv) $f(z) = \frac{z^2}{e^{1/z} - 1}$ at $z_0 = 0$;

Exercise 2

For each function f from the previous exercise, determine a maximal open set $\Omega \subset \mathbb{C}$ such that f is meromorphic in Ω .

Exercise 3

Let f have a pole of order m at a point z_0 and g have pole of order n at the same point.

- (i) Does f + g always have an isolated singularity at z_0 ?
- (ii) Does f + g always have a pole at z_0 ?
- (iii) Same question for h = fg?
- (iv) In cases f + g or fg have a pole at z_0 , what are the possible pole orders?

Exercise 4

If f and g are entire functions (holomorphic in \mathbb{C}) and $|f(z)| \leq |g(z)|$ for all z, show that f(z) = cg(z) for some constant c.

Exercise 5

Suppose that f is meromorphic in \mathbb{C} and bounded outside a disk $B_R(0)$. Show that f is rational.

Exercise 6

Evaluate the integrals:

(i) $\int_{|z|=3} z^{-1} (z-1)^{-1} (z-2)^{-1} dz;$ (ii) $\int_{0}^{2\pi} (a+b\cos\theta)^{-1}\cos\theta d\theta;$ (iii) $\int_{-\infty}^{\infty} (x^{2}+\pi^{2})^{-2}\cos x dx;$ (iii) $\int_{-\infty}^{\infty} (x-i\pi)^{-2} e^{ix} dx;$ (iv) $\int_{0}^{\infty} \frac{dx}{\sqrt{x(x^{2}+1)}};$

Exercise 7

Use Rouché's theorem to find the number of zeroes of the polynomial inside the circle

|z| = 1;(i) $z^6 - 5z^4 + z^3 - 2z;$ (ii) $2z^4 - 2z^3 + z^2 - z + 7;$