Course 414 2005-06

Sheet 4	
Due: after the lecture at the beginning of the next Term	

Exercise 1

Let f be holomorphic in a convex open set Ω and satisfy $|f'(z)| \leq M$ for all $z \in \Omega$ and some fixed constant M > 0.

- (i) Prove that $|f(z_1) f(z_2)| \le M |z_1 z_2|$ for all $z_1, z_2 \in \Omega$.
- (ii) Does the same conclusion hold without the convexity assumption on Ω ? Justify your answer by giving a proof or providing a counterexample.

Exercise 2

Calculate the integral $\int_{\gamma} f(z) dz$ along $\gamma(t) := 2\cos t + i\sin t$, $0 \le t \le 2\pi$, by changing (if necessary) the integration curve to a homotopic one or to a homologous cycle, where calculations are easier, and using the Cauchy's theorem:

- (i) $f(z) = \sin(z^2);$
- (ii) f(z) = 1/z;

(iii)
$$f(z) = \frac{1}{z(z-1)}$$
.

Exercise 3

Let $\Omega := \{z \in \mathbb{C} : 1 < |z| < 5\}$ and set $\gamma_r(t) := re^{it}, \lambda(t) := 2 + e^{it}, 0 \le t \le 2\pi$.

- (i) Show that $[\gamma_2] + [\gamma_3]$, $2[\gamma_4]$ and $[\lambda]$ represent cycles in Ω ;
- (ii) Show that $[\gamma_2] + [\gamma_3]$ and $2[\gamma_4]$ are homologous in Ω .
- (iii) Which two of the curves γ_2 , γ_3 and λ are homotopic in Ω ? Which two induce homologous cycles in Ω ? Do the answers change, if Ω is replaced by \mathbb{C} ?

Hint. Use Cauchy's Theorem to justify that two curves are not homotopic or that two cycles are not homologous.

Exercise 4

Use the theorem on the power series expansion of holomorphic functions or the Cauchy-Hadamard formula to find the radius of convergence of the Taylor series at 0 of the following functions:

(i)
$$f(z) = \log(1+z^2);$$

(ii)
$$f(z) = \frac{\sin z}{(z-1)(z+2i)};$$