Course 414 2005-06

Sheet 2

Due: after the lecture next Friday

Exercise 1

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is also holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}$.

Exercise 2

Give an example of a maximal open set $\Omega \subset \mathbb{C}$, where the given multiple-valued function has a holomorphic branch:

- (i) $z^{1/3}$; (ii) $\log(z+1)$;
- (iii) $\sqrt{e^z}$.

Exercise 3

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies $\operatorname{Re} f = \operatorname{const}$, then $f = \operatorname{const}$.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 4

Find a polynomial function of x and y that is complex-differentiable at every point of the parabola $y = x^2$ but at no other point of the complex plane.