Course 2E1 2004-05 (SF Engineers & MSISS & MEMS)

Sheet 9

Due: in the tutorial sessions next Wednesday/Thursday

Exercise 1

Find the volume of the solid S:

(i) S is the pyramid with vertices (0,0,0), (0,1,0), (2,0,0), (0,0,3);

Solution. S is bounded by the planes x = 0, y = 0, z = 0 and the plane passing through the points (0, 1, 0), (2, 0, 0), (0, 0, 3). The latter has general equation ax + by + cz = d with coefficients a, b, c, d to be found. Substitution of the points (0, 1, 0), (2, 0, 0), (0, 0, 3) for (x, y, z) yields the system

$$b = d, \quad 2a = d, \quad 3c = d.$$

It is enough to find one solution. With d = 6 we get a = 3, b = 6, c = 2 and the equation is

$$3x + 6y + 2z = 6$$

Projection to the x-axis gives $0 \le x \le 2$ as limits for x. Projection to the xy-plane is the triangle $x \ge 0$, $y \ge 0$, $x + 2y \le 2$. Hence the limits for y are $0 \le y \le 1 - x/2$ (for fixed x). Finally, the limits for z (for fixed x, y) are $0 \le z \le 3 - 3y - 3x/2$, the upper limit is obtained from solving the above equation for z. The volume is now

$$V = \int_0^2 \int_0^{1-x/2} \int_0^{3-3y-3x/2} dz \, dy \, dx = \int_0^2 \int_0^{1-x/2} (3-3y-3x/2) \, dy \, dx$$
$$= \int_0^2 (3y-3y^2/2-3xy/2) \Big|_{y=0}^{y=1-x/2} \, dx = 1.$$

(ii) *S* is given by $x \ge 0, 1 \le y \le 2, z \ge 0, z \le 4 - x^2$;

Solution. $z \ge 0$, $z \le 4 - x^2$ together yield $-2 \le x \le 2$, with $x \ge 0$ we have the limits $0 \le x \le 2$. S is the solid above the rectangular $0 \le x \le 2$, $1 \le y \le 2$ and below the surface $z = 4 - x^2$.

$$V = \int_0^2 \int_1^2 \int_0^{4-x^2} dz \, dy \, dx = 8 - 8/3.$$

(iii) S is given by $x \ge 0, y \ge 0, x + y \le 1, 0 \le z \le x^2 + y^2$.

Solution. Projection to the *xy*-plane is given by $x \ge 0$, $y \ge 0$, $x + y \le 1$ and so x-limits are $0 \le x \le 1$ and y-limits for fixed x are $0 \le y \le 1 - x$. Finally, z-limits for fixed x, y are given: $0 \le z \le x^2 + y^2$. S is the solid above the triangular $x \ge 0$, $y \ge 0$, $x + y \le 1$ in the *xy*-plane and below the surface $z = x^2 + y^2$.

$$V = \int_0^1 \int_0^{1-x} \int_0^{x^2+y^2} dz \, dy \, dx = 1/6.$$

Exercise 2

Find area and center of mass (assuming constant density $\delta = 1$) of the bounded region R:

(i) R is given by $2 \le x \le 4, 3 \le y \le 7$;

Solution. The area is

$$A = \int_2^4 \int_3^7 dy \, dx = 8,$$

the mass is

$$M = \int_{2}^{4} \int_{3}^{7} \delta(x, y) \, dy \, dx = 8,$$

the moments are

$$M_1 = \int_2^4 \int_3^7 x \delta(x, y) \, dy \, dx = \int_2^4 \int_3^7 x \, dy \, dx$$

and

$$M_2 = \int_2^4 \int_3^7 y \delta(x, y) \, dy \, dx = \int_2^4 \int_3^7 y \, dy \, dx.$$

Then the center of mass is the point with coordinates $(\frac{M_1}{M}, \frac{M_2}{M})$. The evaluation is simple and is omitted, also in what follows.

(ii) R is given by $x \ge 0, y \ge 0, 2x + y \le 2;$

Solution. The limits for x are found by eliminating it from the given inequalities. We rewrite the last inequality as $x \le 1 - y/2$ and use the second to obtain $x \le 1$. Hence $0 \le x \le 1$ and the last two inequalities give $0 \le y \le 2 - 2x$. Now the area is

$$A = \int_0^1 \int_0^{2-2x} dy \, dx,$$

the mass is

$$M = \int_0^1 \int_0^{2-2x} dy \, dx$$

and the moments are

$$M_1 = \int_0^1 \int_0^{2-2x} x \, dy \, dx$$

and

$$M_2 = \int_0^1 \int_0^{2-2x} y \, dy \, dx$$

and the center of mass has the coordinates $(\frac{M_1}{M}, \frac{M_2}{M})$.

(iii) R is given by $y \ge 0, y \le 1 - x^2$.

Solution. Here, eliminating y, we have $0 \le 1 - x^2$ which yields $-1 \le x \le 1$. Hence the area is

$$A = \int_{-1}^{1} \int_{0}^{1-x^2} dy \, dx,$$

the mass is

$$M = \int_{-1}^{1} \int_{0}^{1-x^2} dy \, dx$$

and the moments are

$$M_1 = \int_{-1}^1 \int_0^{1-x^2} x \, dy \, dx$$

and

$$M_2 = \int_{-1}^1 \int_0^{1-x^2} y \, dy \, dx$$

and the center of mass has the coordinates $(\frac{M_1}{M}, \frac{M_2}{M})$.