Course 2325 Complex Analysis I

Sheet 2

Due: at the end of the lecture on Wednesday of the next week

Exercise 1

For what z does the series converge:

(i) $\sum_{n} z^{n+2^{n}}$, (ii) $\sum_{n} \frac{z^{n^{2}}}{n^{2}}$, (iii) $\sum_{n} \frac{1}{z^{n-1}}$.

Which are power series? Justisfy your answer.

Exercise 2

Consider the sequence of holomorphic functions $f_n(z) = z + \frac{1}{n}$.

(i) Is the sequence (f_n) converging uniformly on \mathbb{C} ?

(ii) Is the sequence of squares (f_n^2) converging uniformly on \mathbb{C} ?

Justisfy your answer.

Exercise 3

Use the Cauchy-Riemann equations to decide which of the following functions are holomorphic:

 $(\text{Re}z)^2$, $i|z|^2$, \bar{z}^2 , e^{2z} , $e^{\bar{z}}$.

Exercise 4

Let $f: \Omega \to \mathbb{C}$ be holomorphic. Define the new function \overline{f} by $\overline{f}(z) := \overline{f(\overline{z})}$. Show that \overline{f} is holomorphic on the open set $\overline{\Omega} := \{\overline{z} : z \in \Omega\}$.

Exercise 5

Using the Cauchy-Riemann equations, show:

- (i) if a holomorphic function f satisfies Ref = const, then f = const.
- (ii) if f = u + iv is holomorphic and $a, b \in \mathbb{C} \setminus \{0\}$ are such that au + bv = const, then again f = const.

Exercise 6

- (i) Show that $(e^z)' = e^z$. (Hint. Differentiate in the direction of the x-axis.)
- (ii) Let f be any branch of $\log z$ (defined in an open set). Using the fact that f is inverse to e^z , show that f is holomorphic and $f'(z) = \frac{1}{z}$.