Course 2325 2010 Complex Analysis I

Sheet 3

Due: at the end of the lecture on Monday in two weeks

Exercise 1

- (i) Show that $(e^z)' = e^z$. (Hint. Differentiate in the direction of the x-axis.)
- (ii) Let f be any branch of $\log z$ (defined in an open set). Using the fact that f is inverse to e^z , show that f is holomorphic and $f'(z) = \frac{1}{z}$.

Exercise 2

Let γ be the sum of two line segments connecting -1 with iy and iy with 1, where y is a fixed parameter.

- (i) Write an explicit parametrization for γ ;
- (ii) For every y, evaluate the integrals $\int_{\gamma} z \, dz$ and $\int_{\gamma} \bar{z} \, dz$. Which of the integrals is independent of y?
- (iii) Use (ii) to show that the conclusion of Cauchy's theorem does not hold for $f(z) = \overline{z}$.

Exercise 3

- (i) Calculate $\int_{\gamma} f(z) dz$, where $f(z) = \frac{1}{z}$ and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$, is the unit circle.
- (ii) Use (i) to show that f(z) does not have an antiderivative in its domain of definition.
- (iii) Use Exercise 1 (ii) to give an example of a domain Ω , where f does have an antiderivative.

(iv) Does $f(z) = \frac{1}{z^n}$ have an antiderivative, where $n \ge 2$ is an integer? Justify your answer.