R \& \text{BACKGROUND}

- For each observable in the AdS_3 bulk space, there is, on its conformal boundary, a corresponding observable in its dual CFT_2.

$AdS_3 \quad \overset{\text{time}}{\longrightarrow} \quad CFT_2$

- The CFT_2 side of the AdS_3/CFT_2 duality is not well-known. Some problems include undesirable non-holomorphicity properties and an inability to quantise the theory by any known method. Thus our focus is on the AdS_3 bulk space.

- Our goal is to find a superalgebra that is an exact symmetry of the scattering S-matrix in the massless AdS_3 sector. For this we work in the Hopf algebra framework.

- An advantage of working with Hopf algebras is that it provides a tensor product of representations of a generic (super)algebra in a well-defined way.

- Finding the complete scattering spectrum in AdS_3 might reveal some symmetry properties in the dual CFT_2.

HOPF ALGEBRAS

In this framework, scattering is described by a universal R-matrix, which is related to the S-matrix by

$S : H_1 \otimes H_2 \rightarrow H_2 \otimes H_1,$

$R : H_1 \otimes H_2 \rightarrow H_1 \otimes H_2,$

where H_1 and H_2 are representations of the following $2 \rightarrow 2$ scattering procedure:

For a generic Hopf superalgebra \mathcal{H}, multiplication has a dual, so-called comultiplication $\Delta : \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$. The comultiplications are given by

$\Delta(\mathcal{H}_L) := \mathcal{H}_L \otimes e^{i\xi} + e^{-i\xi} \otimes \mathcal{H}_L,$

$\Delta(\mathcal{H}_R) := \mathcal{H}_R \otimes e^{i\xi} + e^{-i\xi} \otimes \mathcal{H}_R,$

$\Delta(\mathcal{H}) := \mathcal{H} \otimes e^{i\xi} + e^{-i\xi} \otimes \mathcal{H},$

$\Delta(\mathcal{H}^c) := \mathcal{H}^c \otimes e^{i\xi} + e^{-i\xi} \otimes \mathcal{H}^c.$

The above defined algebra is an exact symmetry of the massless AdS_3 S-matrix, i.e. the comultiplications satisfy the quasicocommutativity relation together with the R-matrix, equivalent to the S-matrix.

THE MASSLESS SECTOR

The massless relativistic Poincaré dispersion relation $E(p) = |p|$ can be related to the massless AdS_3 sector via the deformation parameter $q = e^{i\hbar}$, with coupling constant \hbar. By q-deforming a $(1 + 1)$-dimensional Poincaré superalgebra associated to $sl(1|1)$, non-relativistic regions emerge where the obtained dispersion relation $E(p) = 2\hbar \sin \frac{p}{2}$ is that of the massless AdS_3 sector. Taking two copies of this deformed algebra, one identified with an index L (left) and one with an index R (right), the defining anticommutation relations read

$\{\mathcal{H}_L, \mathcal{H}_L\} = 2\hbar,$

$\{\mathcal{H}_R, \mathcal{H}_R\} = 2\hbar,$

$\{\mathcal{H}_L, \mathcal{H}_R\} = 0,$

$\{\mathcal{H}^c_L, \mathcal{H}^c_R\} = 2\hbar.$

CONCLUSION

- Starting from a purely relativistic dispersion relation, a certain q-deformation allowed for two distinct non-relativistic regions to appear. We approached the scattering spectrum in these regions, where scattering is more intuitive.

- Two copies of the q-deformed $(1 + 1)$-dimensional Poincaré superalgebra proved to be an exact symmetry for scattering in the massless AdS_3 sector. This was realised in the Hopf algebra framework via the quasicocommutativity relation.

FUTURE DIRECTIONS

- Thoroughly analyse the implications of this symmetry algebra on the CFT_2 side.

- Find a symmetry algebra for the massless sector of the AdS_3/CFT_1 correspondence.

REFERENCE

CONTACT INFORMATION

Email: jstromwall@surrey.ac.uk