Thermodynamics: Notes

Thermodynamics is the study of the equilibrium properties of large-scale systems in which temperature is an important variable.

In thermodynamics we confine our attention to a particular part of the universe which we call our system.  

The rest of the universe outside our system we call the surroundings.

The system and the surroundings are separated by a boundary or a wall.  They may, in general, exchange energy and matter, depending on the nature of the wall.

A closed system is one where there is no exchange of matter.

An equilibrium state is one in which all the bulk physical properties of the system are uniform throughout the system and do not change with time.  An equilibrium state will be labelled by the symbol .

Two variables are required to specify an equilibrium state.  These are called state variables or thermodynamic variables.  
If two thermodynamic systems such as gases are put in thermal contact, after a time no further changes in the pressures and volumes will occur, each gas being in an equilibrium state.  The gases are then said to be in thermal equilibrium with each other.

The Zeroth Law of Thermodynamics states that if two systems are in thermal equilibrium with a third, they are in thermal equilibrium with each other.

The temperature of a system is a property that determines whether or not that system is in thermal equilibrium with other systems.

A system is in thermodynamic equilibrium if it is in thermal, mechanical and chemical equilibrium.

Let two systems have the same state p, V).  Put the two systems together.  Change the state of the first system.  If the state of the second system changes, then the wall between the systems is a diathermal wall.  If the state of the second system does not change as that of the first system changes, the wall is said to be adiabatic.  Two systems separated by a diathermal wall are said to be in thermal contact.

An adiabatic or an adiabat is a line on a pV diagram such that the states along that line are states where no heat flow occurs.

A process is the means of bringing about a change in the state of a system.

The initial and final equilibrium states of a process are called the end points.

A process that eventually returns to its initial state is called a cyclic process.

A quasistatic process is a process in which each intermediate state is an equilibrium state.

Reversible processes are quasistatic processes that do not involve any dissipative forces.  

Such a process is characterised by the fact that if an infinitesimal amount of work dW is done on the system to change its state, then an equal amount of work, dW, in the opposite direction, will make the system revert to its previous state.  Less formally, a reversible process is one in which the system is capable of being returned to its initial state.  In addition, when the system is returned to the original state, there is no change in the state of the surroundings.

A Carnot cycle is a particular kind of cycle involving two adiabats and two isotherms.
Work can be done on a system by its surroundings or, similarly, work can be done by a system on its surroundings.  A sign convention is adopted.

Work is positive if it is work done on a system by its surroundings.  The justification for this is that as physicists, we are interested in the system, and so the emphasis is placed thereon.  

Work is negative if it is work done by the system on its surroundings.

Work can be expressed as follows:

Consider an infinitesimal expansion of gas, as the piston moves through a distance dx.  Since the gas expands, this is work done by the system on the surroundings and as such it is negative work.  Hence we have dW = -Fdx = -pAdx = -pdV.

Hence, 
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This equation holds true for all reversible processes.  It does not hold for some irreversible processes.  Consider a gas of volume V in a container whose walls are adiabatic.  The gas occupies half the container only; it is confined therein by a partition.  On breaking the partition, the gas occupies a volume 2V.  Applying (1) without consideration would yield a finite, non-zero answer.  However, no work is done, since no work is done by the surroundings of the gas outside the container on the gas itself.  Hence, W is zero.  This is so because the process is irreversible.

When a system passes from one state to another, it passes through a series of intermediate states.  This series of intermediate states is called a path.

In going from state 1 to state 2, we can go along the isotherm from 1 – 2, in which case the amount of negative (since it is an expansion) work done is 
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(hatched area).  Or we can go from state 1 to state 3 to state 2, in which case the amount of work done is the area of the rectangle.

We see that the total work done in going from one state to another is dependent on path.

Because of this path-dependence, it makes no sense to talk about the “amount of heat” in a body: suppose you say that the system in state 1 has n units of heat.  Then the system in state 2 has n units of heat plus the heat added when the body is moved to state 2.  But this is ambiguous: since state 2 can be attained in an infinite number of ways.  So the idea of “heat in a body” is not useful.

We can, however, define the internal energy of a body.  Suppose that the body consists of n molecules.  Then we define the internal energy of the body as
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(2)

This definition does not consider potential energy arising from the interaction of the system with its surroundings (e.g., the increase in the molecules’ gravitational potential energy in being raised a height h).

During a change of state of a system, the internal energy may change, from an initial value U1 to U2.  We define U as 
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The First Law of Thermodynamics is
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That is, during a change of state of a system, the change in the system’s internal energy is equal to the sum of the heat added to the system and the work done on the system by its surroundings.

(2) is not an operational definition.  Defining U in terms of the first law is: from 
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we can express U in terms of measurable quantities, Q and W.  This only gives a definition for U, you might say.  But by assigning some value to U in a particular reference state, we can use equation (3) to define U in any other state.

Another problem arises: U is the sum of two path-dependent quantities.  How is our definition of U meaningful?  It is meaningful because we find that in all cases, U is independent of path.

That is, the change in internal energy of a system during any thermodynamic process depends only on initial and final states, not on the path leading from one to another.

The First Law in differential form is 
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The bar reminds us that 
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are path-independent and hence are inexact differentials.

We think of 
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as a quantity of energy being transferred by other means than by work.  This negative formulation is a way of defining heat.

Just as we had a sign convention for work, so too do we have one for heat:
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 is positive for heat entering (flowing into) the system.
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 is negative for heat leaving (flowing out of) the system.

Suppose that we let heat flow into a system, and bring about a change in temperature:

The heat capacity is defined as
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The specific heat capacity is the heat capacity per unit of mass:
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The molar heat capacity is the heat capacity per mole:
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“Heat capacity” is a bad name: it suggests that heat is a quantity of energy in a body.  That is not the case.  Heat is just energy in transfer, by other means than work.

Now equation (7) is misleading for another reason: there is a difference between the heat capacity of a system for a process at constant pressure (isobaric process), and for a process at constant volume (isochoric process).

We can express these differences in the following way, and find explicitly the principal molar heat capacities of an ideal gas.

Now the ideal gas is characterized by the following relations:
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The First Law: 
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For an isochoric process, dV = 0.  Hence, we get that
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where the subscript V indicates an isochoric process.  Note that from this it follows that 

dU = CVdT









(9)

Note that this relation does not hold in general, for in the case of a real gas, U = U(T) only does not hold.

For an isobaric process, we have that 
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Using the ideal gas equation, get that 
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We define the ratio  as
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and note that  is always greater than unity.

An adiabatic or an adiabat is a line on a pV diagram such that the states along that line are states where no heat flow occurs.

We can derive the equation of an adiabatic as follows:

From the First Law, get 
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Separate the variables and integrate:
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The constant is arbitrary and can be determind from initial conditions:
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For an isothermal process, we have that pV1 = constant.  Now we have that for an adiabatic process, pV = constant, where  is always greater than unity.  So an adiabat is always steeper than an isotherm.

The point (p, V) is important.  Changing p and V in various ways will give very different results.

A process that eventually returns to its initial state is called a cyclic process.  An example is that in the diagram, where we have 
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It follows that Ui = Uf.  Hence, 
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Thus, adding heat to the system will result in the system’s doing work on its surroundings.  As such the cycle is a heat engine.

Similarly, doing work on the system will result in the system’s losing heat.  

These opposite processes manifest themselves on the pV diagram.  The different cycles move in different directions: one clockwise, the other anticlockwise.

A Carnot cycle is a particular kind of cycle involving two adiabats and two isotherms.

In going from a to b, heat is added.  This is an isothermal process.

In going from b to c, work is done.  This is an adiabatic process.

In going from c to d, heat flows from the system to the surroundings.  This is an isothermal process.

By the First Law for a cycle, we have that 
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Consider the following mechanical processes:

Example 1:
The simple pendulum:

We exert a force F on the pendulum at each instant such that
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 is an arbitrarily small quantity.  Thus, the bob moves slowly through many equilibrium positions.  Then, if we take
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 is arbitrary, we have that 
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.  Thus, the bob moves slowly back along its path and returns to its initial condition.

Thus, by reducing the initial (forward) force by an infinitesimal amount
[image: image48.wmf]e

2

, the system returns to its initial state (position).  Further, the surroundings are unchanged, in the sense that there has been no “temperature rise”, or any other such change.

Thus, the process is

· Quasistatic – each intermediate state is an equilibrium state:
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· Such that no dissipative forces are involved.

These two conditions are in fact the criteria for a reversible process.

Example 2:  
Friction on a block:

This example tests for reversibility using the above criteria:

Let
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.  Thus, we have that the block moves forward very slowly.  Since 
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 is an arbitrarily small quantity, the motion consists of translation through many states of (mechanical) equilibrium.

Now let
[image: image54.wmf]e

2

'

-

=

F

F

.  Assume for contradiction that this is a reversible process.  Thus, we let
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.  Thus, we see that a frictional force produces a forward motion.  But the frictional force opposes motion.  This is a contradiction and we conclude that the process is not reversible.

Example 3:
Joule’s Paddle Wheel:

Suppose that you reduce the torque on the shaft infinitesimally – which is equivalent to reducing the force shown, F, by an arbitrary amount
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.  The shaft does not start to turn in the opposite way, with the weight rising again.  Compare this to the energy due to some motion being “stored” by some device such as a spring.

Example 4: 
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heat losses in a resistor:

Suppose that you reduce E to E - 
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, where  is arbitrary.  Then the current will not flow in the other direction, i.e., the voltage across the resistor will not be such as to do work on the battery.  Compare this with the situation where you store energy (charge) in a capacitor and then let the capacitor discharge, thus resulting in a current in the opposite direction to that caused by the battery.

Example 5:
The Cylinder and the Piston:

Applying the force F, where F is such that
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Then let
[image: image62.wmf]e

2

'

-

=

F

F

.  We get that
[image: image63.wmf]e

=

-

'

F

pA

.  Thus, reducing the initial force by an amount
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 results in a gradual expansion through a distance dx.

In practice, the definition of a reversible process ensures that any means of converting mechanical energy to heat is irreversible.  For, recall that a reversible process is a quasistatic process involving no dissipative forces.  The heat engine, however, by converting heat into mechanical energy, is a partial reversal of this process.

Consider now some facts about heat flow.  Suppose that we have established some temperature scale in order to define what “hot” and “cold” mean.  We could use, for example, the ideal gas temperature scale.

We observe that it is possible for heat flow from hot to cold bodies to take place.












(1)

After some time, thermal equilibrium between the bodies is attained.












(2)

We note that any return to this thermal equilibrium can be used to produce work.  Schematically, we have












(3)

From an engineering point of view, this is useful.

But if a return to thermal equilibrium produces no work, in engineering terms, this return to thermal equilibrium is a loss.












(4)

Therefore, since our temperature scale defines “hot” and “cold”, and a temperature difference determines heat flow, we can say that any return to or attainment of thermal equilibrium, as outlined above, can be used either to produce useful work, as in (3), or can be wastefully dissipated through a spontaneous flow of heat, as in (4).

This leads to Carnot’s Efficiency Principle:

Whenever in the drive to equilibrium, heat is allowed to flow and equilibrate temperature without running an ideal engine, there will be a loss of potential work, the greater the loss the less ideal the engine.  An ideal engine will be one in which there are no spontaneous heat flows across finite temperature differences.  

Carnot’s principle leads us to an important fact about how the working substance of our engine should behave.  If, for example, the working substance of an engine, say steam, is hotter in one place than in another, there will be a spontaneous flow of heat that will tend to make the temperature uniform, but that will also represent a waste of potential work.  Thus, in our ideal engine, we would like the bulk properties of the working substance to be always uniform.  Therefore, the working substance must always be in equilibrium.  Equivalently, all processes must be quasistatic.

Further, we shall ban dissipative forces.  For, take the example of two pistons, in thermal contact.  Suppose that the systems have states 
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.  Bring them together so that thermal equilibrium is attained.  Thus,
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.  At least one of the pistons will move.  If we want “lost work” to be minimized (and, as it turns out, this is equivalent here to demanding that useful work be maximized), we must have that no friction is involved in this motion.  Thus we ban dissipative forces in minimizing the amount of “lost work”.

It follows that in an engine (a cycle) that maximizes the amount of work usefully obtained from inputs of heat in a process such as (3), all transfers of heat must be between bodies of “nearly”* the same temperature.

This can be seen if we first summarize what we have learned:

(1) We want the bulk properties of the system to be uniform for each part of the cycle.

(2) We know there will an inevitable “fall of heat”: heat will be extracted from a reservoir at temperature T1 and emitted to a reservoir at temperature T2, where
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(3) We want the engine to do work.

(4) We want no dissipative forces to be involved.

Some processes, we see, will involve heat flow.  In these processes, we want the system to be in equilibrium.  So we require a quasistatic process.  Thus, every process involving heat flow is to be quasistatic.  Further, we have banned dissipative forces from the system.  Therefore, these processes are reversible.  A process involving heat flow is made reversible by making the process isothermal.  Thus, the reservoir is to be at temperature T1 + , while the working substance is to be at temperature T1, with  being an infinitesimally small quantity.

From (2), there is an inevitable “fall of heat”.  So the engine will do work between two temperatures, T1 and T2.  Therefore, the engine will involve processes in which the working substance changes its temperature from T1 to T2, or from T2 to T1.  During these processes, we require equilibrium.  Therefore, we require these processes to be quasistatic.  Further, dissipative forces are not permitted.  Therefore, these processes are reversible.  A process involving a finite
*
Body A is at temperature T+, while body B is at temperature T.  This must be the case.  For, if we had that = 0, the bodies would be in thermal equilibrium and so no heat flow would take place and we would have no work and hence no engine.

Because the “nearly” statement represents an infinitesimal quantity, we can change the temperatures of the bodies (how we do this does not matter) such that body A has temperature T-2 and body B remains at temperature T.  Then heat will flow from body B to body A.  We note that this is one of the requirements of a reversible process
temperature drop is made reversible by making the process adiabatic.  Thus, any process involving a finite temperature difference is to be adiabatic.

These two processes are sufficient to make an engine satisfying Carnot’s Principle.  Such an engine is called a Carnot engine.  Thus, a Carnot engine is a cycle consisting of two adiabats and two isotherms.

In sum, a Carnot engine has the following properties:

It is an engine designed so that useful work is maximized and “lost work” is minimized, the following conditions hold:

(C1)
Any step (process) in the cycle involving heat transfer from one constituent body of the machine to another must be such that the process is carried out under quasistatic, and therefore isothermal conditions.

(C2)
Any step (process) in the cycle across a finite temperature difference involving mechanical work must be such that the process is carried out under quasistatic, and therefore adiabatic conditions.

(C3)
All steps (processes) in the cycle are such that no dissipative forces are involved.

Further, it follows from these conditions that the cycle is reversible.
Definition:

We define the quantity  to be the efficiency of the engine (cycle):
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Which, in the case of the cycle above, is
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.  We should expect  in our engine to be quite high, but as we shall see, there exists an upper bound to for any engine: it must be less than unity.*

Informally, the efficiency is equal to (What you get in) / (What you get out).

*
This is the Second Law of thermodynamics.  It states that it is impossible to construct a device that, operating in a cycle, will produce no other effect than the extraction of heat from a single body of uniform temperature and the performance of an equivalent amount of work.  It therefore demands that 
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.  This indeed sets an upper bound on the efficiency of the engine.  Carnot’s great intuition was to see that this was indeed the case, without his having any knowledge of the Second Law of Thermodynaimics.

Futher, this law must not to be thought of as some  kind of statement that says that “dissipative forces are always present in a practical system, and so  “ heat loss” – and thus an efficiency of less than unity – are inevitable”.  This is simply not true.  No dissipative foces are involved in Carnot’s ideal engine, and yet it has an efficiency of less than unity.  

The Second Law of Thermodynamics:

The Kelvin-Planck Statement:

It is impossible to construct a device, that operating in a cycle will produce no other effect than the extraction of heat from a single body of uniform temperature and the performance of an equivalent amount of work.

The underlined terms require further discussion:

Cycle:  This term is the requirement that the state of the working substance be the same at the start and at the end of the process, even though the working substance may change in intermediate steps.  I.e., there can be no net change in the working substance.

This term enters this statement of the law because there exist processes which change heat completely into mechanical work with no “waste heat”.  But in these cases, there is a net change of the working substances.

For example, we could heat one mole of an ideal gas and allow it to expand quasistatically and isothermally (by keeping in thermal contact with a reservoir), from V1 to V2
Then, 
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The expansion is isothermal, so T = constant and U = 0.  Thus, 
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, and so we have a 100% conversion of heat to work.  But the Second Law does not apply here because there has been a net change in the ideal gas of the system.

No effect other than means that, in addition to rejecting heat at a lower temperature, the only other effect on the surroundings is the work done by the system thereon.  Thus, the heat reservoirs of the engine must not do work and so their volume must remain constant.  Such a device that delivers heat with no work being done is called a source of heat.

Single:  Suppose that you have the engine outlined below:
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This setup appears to be a violation of the Kelvin-Planck statement: heat is extracted from two reservoirs, yet there is no ejection of waste heat.  But it could be the case that 
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, and so body B acts as the cold reservoir.  To avoid this possible ambiguity, we add the term “single” to the Kelvin-Planck statement.

While the Kelvin-Planck statement maintains that it is impossible (for a cycle) to effect a complete conversion of heat to work, the opposite situation is possible: it is possible for the work done on a system to be changed completely into het – recall Rumford’s canon-boring expermiment:

Canon-boring experiment:

The state of the system (canon) remains unchanged.  Heat flows into the surroundings (large body of water).

The following is a schematic representation of the Kelvin-Planck statement:

The Clausius Statement:

It is impossible to construct a device that, operating in a cycle, produces no other effect than the transfer of heat from a colder body to a hotter body.

Here is a schematic diagram of the Clausius Statement:

Theorem:

The Kelvin-Planck statement holds if and only if the Clausius statement holds.

For, assume that the Kelvin-Planck statement does not hold.  Then we have an engine E that works in a cycle, extracts heat Q1 from the hot reservoir and does work W = Q1 in each cycle.  We let this engine drive a refigerator R, where R is such that W is sufficient to drive the refrigerator through one cycle.

We have that the refrigerator extracts heat Q2 from the cold reservoir.  Then, the heat it delivers to the hot reservoir is Q1 + Q2.

We can consider the composite refrigerator outlined below:

This device violates the Clausius statement of the Second Law.

We therefore conclude that the Clausious statement implies the Kelvin-Planck statement.

Assume now that the Clausius statement does not hold.  This means that there exists a refrigerator R which extracts heat Q2 from the cold reservoir and delivers the same heat Q2 to the hot reservoir, with no work being done on the system.  Consider now an engine E operating between the same reservoirs, and doing an amount of work W on the surroundings.  Further, let E be such that in each cycle, it extracts heat Q1 from the hot reservoir and delivers heat Q2 to the cold reservoir, and so W = Q1 – Q2.

We look now at the composite engine:

This device violates the Kelvin-Planck statement of the Second Law.

Therefore, the Kelvin-Planck statement implies the Clausius statement.

Thus, the Kelvin-Planck statement holds iff the Clausius statement holds.

Theorem (Carnot’s Theorem):  No engine operating between two temperatures is more efficient than a Carnot engine operating between the same temperatures.

Proof:  Assume for contradiction that there exists an engine E with efficiency E, such that 
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, where C is that Carnot engine operating between the same temperatures as E.

We let C be such that it performs the same amount of work in a cycle as the engine E: WE = WC.

Then, 
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Drive the Carnot Engine in reverse so that it becomes a refrigerator.

Since 
[image: image82.wmf]E

C

Q

Q

1

1

>

, the refigerator diagram becomes

This device contradicts the Clausisus statement. 

We conclude that 
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Theorem:  All Carnot engines operating between the same temperatures have the same efficiency.

For, let C and C’ be two Carnot engines operating between two given temperatures, and let their efficiencies be C and 
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.  We therefore let Carnot engine C run as a refigerator:

The second diagram amounts to the following:

Which we see is a violation of the Clausius statement.

Thus, we conclude that 
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The Thermodynamic Temperature Scale:

Recall, 
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.  For any engine operating between two reservoirs, we have that 
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Recall also that C is independent of the nature of the working substance and depends only on the temperature of the reservoirs between which the engine operatures.  This gives us a means of defining a temperature scale independent of any particular matierial.  Thus, we define  the thermodynamic temperature, T, so that T1 and T2, the temperatures of the reservoirs, are such that
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Comparing (18) and (19), we get that
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Note that this definition holds for a Carnot engine only.

Theorem:  The ideal gas temperature scale and the theromdynamic temperature are equivalent:

Proof:  Consider the Carnot cycle shown:

We look for Q1:
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, by the First Law.

We now look for Q2:
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and 
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are adiabatic processes.
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Thus, Tg and T are the same up to a multiplicative constant.  But Tg and T agree at 273.16K.  Therefore,  is unity, and so we have that
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Definition:  A Carnot refrigerator is a Carnot engine operating in reverse.

The coefficient of performance of the refrigerator is defined as 
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We note that 
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 is greater than unity.

A heat pump is the same Carnot cycle as the refrigerator.

However, now we are interested in providing heat to a hot reservoir (e.g., heating a house).  We are therefore interested in Q1.  Thus, we define the coefficient of performance of the heat pump as 
[image: image104.wmf]h

h

1

1

1

1

1

2

1

2

1

2

1

1

1

=

-

º

-

=

-

=

º

T

T

Q

Q

Q

Q

Q

W

Q

HP


(23)

The coefficient of performance of the heat pump is strictly greater than unity.  This figure may in fact be three or four in practice.  This is an amazing efficiency: using a heat pump instead of electricity to heat one’s house will result in a reduction in one’s electricity bill of a factor of three of four.

A heat pump will typically extract heat from a cold reservoir such as a large body of water by chilling it and will transfer this heat to a warm reservoir (e.g., a house), thus warming the house.

We note that 
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For a reversible process, we define the entropy of the process by the following identity:
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Where 
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 is an inexact differential signifying heat transfer in a reversible process.

Taking an integral over a path which is one of a reversible process, we get
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For a Carnot cycle, we have that 
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The change in entropy along path ab is 
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, and the change in entropy along path cd is 
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.  Paths bc and da are adiabatic and hence isentropic.  That is, they are processes in which the entropy does not change.  Thus, for a Carnot cycle, the net change of entropy is 
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Further, the net change of entropy in any process – provided that it is a reversible process – is zero.  For, take an arbitrary reversible process, shown on the pV diagram:

We can approximate the cycle arbitrarily well by a sequence of isothermal-adiabatic-isothermal-adiabatic cycles.  That is, by Carnot cycles.  The net change of entropy around each Carnot cycle is zero, and so the net change of entropy around the arbitrary cycle is zero.

Thus, for a cyclic reversible process,
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Theorem:
Entropy is a path-independent quantity.

For, take any reversible arbitrary cycle on a pV diagram.
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These are reversible processes:
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Thus, the integral 
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 is path-independent and so there exists a state function S with  
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Where R reminds us that the integral is to be taken over a reversible path only.

***

Now the First Law is 
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Which for a reversible process is
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But since this is a reversible process, 
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Thus, 
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In this way, we have expressed the internal energy, U, as a function of path-independent variables.  The equation
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is called the central equation of thermodynamics.

Computing Entropy:

Consider a beaker of water initially at temperature T1.  This beaker is placed in thermal contact with a reservoir at temperature T2, with 
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, so that the final temperature of the beaker of water is T2.  We are thus dealing with a change of state, where the intial and final states are well-defined – have definite thermodynamic variables associated with them.  We might, in this way, naively apply the equation 
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, but we cannot in fact do this, since the process is irreversible.  This is because the temperature difference T2 – T1 is finite.  However, we can construct an ideal reversible process that takes the system (the beaker of water) between the initial and final states.  We can calculate the entropy change that results from this ideal process.  This change of entropy, derived from an imaginary reversible process is then defined to be the change of entropy undergone by the system as it goes through its actual, irreversible process.

Thus, the following analysis holds:

When the water is placed in thermal contact with the reservoir, with the temperature of the water being at T, and the temperature of the reservoir being at T + T, where 
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Entropy Diagrams:

Consider the Carnot Cycle:

	Process
	Properties
	Result

	a
[image: image134.wmf]®

b
	Isothermal
	Entropy increased by amount Q1 / T1

	b
[image: image135.wmf]®

c
	Adiabatic, hence isentropic.
	Finite temperature drop, work done.

	c
[image: image136.wmf]®

d
	Isothermal
	Entropy decreased by amount 
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	d
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a
	Adiabatic, hence isentropic.
	Finite temperature increase, return to intial state.


***

Entropy change for the ideal gas:
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(Entropy change per mole of ideal gas)
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***

Maxwell’s Relations:

We consider the following functions:

(i)
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Each equation can be used to relate the diverse thermodynamic variables:

Equation (i) implies that 
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But dU = TdS – pdV.

Hence, 
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Now U is a path-independent function and so dU is an exact differential.  Therefore, 
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(M1)

Equation (ii) is a state function since it is the sum of two state functions.
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dH is an exact differential:
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(M2)

Definition:  Equation (ii), i.e., H = U + pV, is called the enthalpy of the system.

Equation (iii) is  a state function since it is the sum of two state functions:
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dF is an exact differential:
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(M3)

Definition:  Equation (3), i.e., F = U – TS, is called the Helmholtz Free Energy of the system.

Equation (4) is a state function since it is the sum of two state functions.
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dG is an exact differential:
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(M4)

Definition:  Equation (iv), i.e., G = H – TS, is called the Gibbs Free Energy of the system.

Remark:  Equations (ii), (iii) and (iv) are Legendre transformations:

Let A(x,y) be a function of two independent variables xand y.  Let z be a third independent variable.  It is desired to find a functional relationship between z and y.

Put 
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(7)

These three equations specify the transformation completely.

Definition: A phase is a homogeneous region of a substance having definite boundaries.

For example, a glass of water.

Changing the thermodynamic variables which specify the state of a system can change the phase of that system.

The Van der Waals equation describes real gases – i.e. a gas where the interactions between the molecules and the finite size of the molecules cannot be ignored. Since phase changes are due to the former fact, one can expect the Van der Waals equation to explain phase changes.
In deriving this equation, we consider attractive intermolecular forces only.  Since repulsive intermolecular forces act at very short range, this is acceptable.  Within the gas, the sum of all forces acting on each molecule is zero.  

However, at the surface of the body of gas, there are no molecules to cancel the attractive forces due to the inner molecules:

The net force on the (i)th particle is therefore directed inwards.

This “internal pressure” depends both on the number of molecules in a layer of gas on (or adjacent to) the surface, and on the number of molecules in a layer of gas behind this outer layer.  Thus, 
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(1)

Where a is an empirical constant.

Thus, 
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(2)

Now if the atoms are considered to be impenetrable spheres of a finite size, the volume in which they can move is reduced.  For two molecules of radius R and of volume 
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, the molecules cannot get within a distance 2R of each other.  Thus, assuming two-body collisions only, we get that the excluded volume for each pair of atoms is 
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We therefore have the fully modified gas equation given by
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In terms of n, we have
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(3)

Where the a’s are different in each case and 
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(4)

This equation is in fact a polynomial in V (assuming constant p and T).
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(5)

· The form assumed by (V) – where (V) has no physical significance – depends on the values of p and of T.

· (V), being of degree 3, always has at least one real root.

· For small T and for a suitable value of p, (V) has three real roots.

· As T increases, the real roots become such that they are close together, until at a certain value of T, called the critical temperature, TC, the three real roots coincide.  

· For T > TC, (V) has two complex roots and one real root.

Now we can also write equation (4) as follows:


[image: image182.wmf]2

V

a

b

V

RT

p

-

-

=










(6)
· p is asymtotic at V = b.

· For large T, 
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, and so the gas is approximately ideal.  This implies hyperbolic behaviour for equation (6) and so we expect no inflection points.

· For small values of T, we expect at most 3 (distinct) inflection points.

· For TC, we have precisely one inflection point.

· Above TC, there are no inflection points and so the behaviour of (6) is hyperbolic.

· The region involving local maxima and minima are unstable, in the sense that for a state (p*,V*) such that 
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 (i.e. a local maximum), any small change in V* produces a large change in p.

In practice, therefore, a system will not undergo a processlike the following one.

In fact, a system undergoing a phase change will move through point a homogeneously.  At point b, the gas mixes with the substance in liquid form (that phase of the substance identified with the point d), and proceeds to condense isobarically along the path 
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.  At c, the entire substance is in liquid form.  The substance then moves homogeneously through point d.
Definition:  The line 
[image: image186.wmf]c

m

b

®

®

 is called a mixed phase line of a line of coexistence.
We can justify this isobaric process theoretically as follows:

Imagine a system undergoing the reversible cycle blmnc + cpmqb.  By cyclicity and reversibility, we have that 
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area of f = area of g








(7)
As a further proof of this, we consider the Gibbs’ Free Energy Function: 
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Theorem:  The condition for thermodynamic equilibrium in a system involving constant temperature and pressure is that G be a miniumum.

Without proof.

Consider now one substance at constant temperaure and pressure – T and p, say.  Let this system undergo a phase transition.  Let G1 be the Gibbs’ Free Energy of the substance in phase 1 and G2 be the Gibbs’ Free Energy of the substance in phase 2.  We assume that the system is closed: if M1  is the mass of the substance in phase 1 and M2  is the mass of the substance in phase 2, then 
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Assume thermodynamic equilibrium, with p and  T constant.  Then 
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(8)
Since g1 = g2, we must have that for the same cycle as before, 
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, where the lower case symbols indicate that the calculation is done on a per unit mass basis.  The differential arises from the definition of G.
Now s = 0, by cyclicity.  Therefore, 
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The Van der Waals equation is effective for predicting phase changes and provids us with the critical values.  Since TC give rise to a point of inflection in V – p space, we must have that
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(9)
Equations (9) are three equations in two unknowns, a and b, since  in practice, TC, VC and pC  are measurable experimentally, and so we are left with a and b to determine.  The equations are possibly inconsistent.  As a consistency criterion, we obtain, from the abouve equations the relation
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The degree to which measured values of a and b give differ from the value of the ratio 
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 in equation (10) defines how consistent the measured values of a and b are with equations (9).
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