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Abstract:

This experiment is an exercise in the principles and practice of optical
spectroscopy.  The continuous emission spectrum of a tungsten halogen
lamp is studied, and this is compared to the blackbody spectrum.  This
investigation leads to  a calibration of the sensitivity of the apparatus.
The emission spectrum of a mercury discharge lamp is examined, and
the doublet at 576.959nm and 579.065nm1, due to the splitting of a single
line (arising from spin-orbit coupling) is observed.  The emission lines
of  mercury  are  found  to  occur  at  404.21nm,  407.56nm,  435.35nm,
491.39nm and 545.78nm.  The doublet lines are observed at 576.66nm
and at 578.64nm.  These results are accurate to within 4.0± nm.

The  transmission  of  light  through  a  semiconductor  film,  ZnTe,  is
considered, and the thickness of the film is measured, and is found to be

mt µ3.03.1 ±= .   The  dispersion relation for  the  index of  refraction
( )λn  is observed.  Further, the bandgap of the ZnTe semiconductor is

measured,  and this  is  found to  be  eVEg 3.02.2 ±= .   This compares
with the actual value of 2.4eV2.  

The  absorption  and  fluorescence  of  the  laser  dye  rhodamine  6G  is
studied and the cross section for absorption is obtained.  This is found to
be 220

max 102.08.3 m−×±=σ , and this compares with the actual value of
220100.4 m−× 3.  Finally, the redshift of the fluorescence spectrum of the

laser  dye,  relative  to  the  absorption  spectrum  was  measured  to  be
nm520 ±=∆λ . 

1 Jenkins, F A and White, H E , Fundamentals of Optics, 4E, McGraw-Hill, 1976.
2 http://www.veeco.com/learning/learning_lattice.asp
3 … D.A. Eastham, Taylor and Francis, London, 1986.



Theory and Equations:

1. The Blackbody emitter

The tungsten halogen lamp of experiment 1 resembles an ideal blackbody source.
This radiates at all wavelengths.

The blackbody curve (Planck Distribution) gives the intensity in arbitrary units as
a function of wavelength:
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The characteristic spectrum is given below:

Figure 1:  The blackbody spectrum at different temperatures.  The y-axis gives
intensity in arbitrary units.



2. The many-electron atom

In experiment 2 we study the emission spectrum of a mercury discharge lamp.
Such a source emits light at discrete frequencies, and these emissions correspond
to electronic transitions from states of different energy, in the mercury atom.

The electrons in mercury are strongly spin-orbit coupled.  Now the general
Hamiltonian for a many-electron atom is

SORCCF HHHH ˆˆˆˆ ++= (3)

Where the first term is due to centrally symmetric potentials experienced by the
electrons (the Central Field Hamiltonian), the second is due to any residual
electron-electron Coulomb interactions, and the third term is the spin-orbit term,
due to the interaction of the electron’s spin with the nuclear magnetic field seen

by the orbiting electron.  Now ( )
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term is important compared to RCĤ , for heavy atoms such as mercury.  The
spin-orbit coupling breaks the degeneracy of spectroscopic terms with 0≠L , and
this leads to the doublet seen in spectrum of mercury.

3. Transmission through a ZnTe film

The film is placed on a sapphire substrate as shown in figure 2.

Figure 2:  The air-film-substrate arrangement.  We consider normal incidence
and note that nair < nfilm, while nfilm > nsubstrate.



The condition for constructive interference (maximal reflectivity, R), is that the
optical path length, δx, be an integral number of wavelengths.   The optical path
length takes phase shifts into account.

For R maximal (T, transmittance, minimal), 
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Also, transmittance T is maximal when

ntm 2=λ (4)

Where in equations (3) and (4), m is an integer and n is the index of refraction of
the film.

ZnTe is a semiconductor.  A semiconductor is an insulator with a small band gap.
Now in solids, the allowed values of energy for the electrons cluster together in
bands, and these are realized in an energy versus k plot (where k is the electron
wave vector).  The band gap is that region of the plot from which allowed states
are absent.  Electrons in states near the top of the band will not be excited by
incident photons unless the photons have sufficient energy to move the electrons
into allowed states in another, higher band.

The absorption spectrum of the ZnTe sample is analysed and the wavelength
region in which absorption is large is noted.  In this region, the photon energies
are comparable to the band gap energy of the semiconductor, and so electrons are
readily excited across the band gap, into the conduction band.  Thus, the band gap
energy is quantifiable, by a study of the wavelength-dependence of the
transmission coefficient, in this wavelength region.



4. The Rhodamine Dye

Rhodamine 6G is a complex molecule used as an active medium in laser physics.
This is due to the fact that the energy levels of Rhodamine approximate a four-
level system.  These are shown in figure 3.  The closely spaced levels correspond
to vibrational transitions (nuclear vibrations around the equilibrium bond length),
and these are associated with IR photons.  Thus, a series of closely spaced levels
is superimposed on a ladder of electronic energy states.  The separation of
adjacent electron energy states is associated with photon transitions in the visible
range.

Figure 3.  The “band structure” of Rhodamine 6G and the sequence of
transitions shown schematically.

Typically, photons are absorbed by electrons in the lower, S0 “band” and induce
transitions to the S1 band.  Thereafter, decays down the vibrational band occur,
and subsequent fluorescence (emission of visible light) occurs as the electrons
cascade back down to the S0 band.

These processes are governed by the Franck-Condon principle: during electronic
transitions, the nuclear coordinates are fixed.  Thus, the electronic transitions of
figure 3, in the energy versus nuclear separation plot, must be vertical.
Consequently, fluorescence happens  at lower energies (hence, higher
wavelengths), compared to absorption.4  Consequently, the emission spectrum is
shifted to higher wavelengths (“red shifted”), relative to the absorption spectrum,
and this is seen in figure 4.

4 Where, by “fluorescence happens at lower energies”, we mean that the peak fluorescence is at
lower energies, relative to the peak absorption.



Figure 4.  The absorption spectrum, together with the emission spectrum, as a
function of wavelength.  The emission spectrum is “red shifted” relative to the
absorption spectrum because the Franck-Condon principle demands that nuclear
coordinates must remain fixed during optical transitions.  This means that the
photon energy associated with emission is less than that of absorption.  (After
D.A. Eastham)



Experiment 1:

This experiment aims to do the following:

• To record the emission spectrum of the tungsten halogen lamp.
• To determine the sensitivity of the spectrometer system.

The spectrum of tungsten was obtained and is demonstrated in the foregoing
intensity versus wavelength plots.

Figure 5.  The spectrum of Tungsten.  The second image has been rendered
smoother by averaging adjacent values of intensity.



The intensity (measured in counts) was noted for various wavelengths and the
following table was obtained:

Wavelength / nm Intensity (Counts)
400 37
450 255
500 1647
550 2925
600 3558
650 3489
700 2849
750 1806
800 1060
850 697
900 438
950 204
1000 68

Table 1: The observed intensity as a function of wavelength.

This was compared with the blackbody model: it is assumed that tungsten is a
blackbody radiating at a temperature T = 3417 K.

The intensity as a function of wavelength is then given by Planck’s Law:
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The values of ( )λI  for the wavelengths in the table above were obtained using
this formula:

Wavelength / nm Intensity (Arbitrary units)
400 1.01573E12
450 1.80777E12
500 2.71204E12
550 3.61169E12
600 4.41581E12
650 5.07071E12
700 5.55599E12
750 5.87489E12
800 6.04457E12
850 6.08866E12
900 6.03225E12
950 5.89896E12
1000 5.70953E12

Table 2.  The theoretical intensity (in arbitrary units), as a function of
wavelength.
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Figure 6.  The blackbody curve of Tungsten, obtained from the data in table 1.

Re-scale so that the theoretical and experimental intensity maxima are equal:
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Now superimpose the experimental and theoretical curves:
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Figure 7.  The superposition of the observed and blackbody curves of Tungsten.

Finally, the sensitivity S was calculated from the following formula:

blackbody

observedblackbody

I
II

S
−

≡ , where the values of Iblackbody have been normalized so that

the intensity maxima of the observed spectrum and the blackbody spectrum agree.

The following graph of sensitvity S against wavelength is obtained.  Here, S = 0
corresponds to 100% sensivity.
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Figure 8:  Sensitivity as a function of wavelength.  Here, a sensitivity of zero
corresponds to 100% agreement between the observed and blackbody spectra.

This calibration experiment explains the apparent “blueshift” of figure 7: it is only
in the wavelength interval nm500≈λ  that we can expect the observed and
blackbody spectra to agree.  At other wavelegnths, these differ, to the extent
shown in figure 8.  This difference is due to the diffraction undergone by the light
in the apparatus.



Experiment 2:

This experiment aims to do the following:

• To find the wavelengths of the lines in the emission spectrum of
mercury in the range nm1000350 −=λ .

• To determine the resolving power and the resolution of the
spectrometer.

The spectrum of mercury was obtained and the characteristic lines were noted at
the following wavelengths:

404.21nm, 407.56nm, 435.35nm, 491.39nm (very weak), 545.78nm

Now these values for the emission lines are accurate to within 4.0± nm, because
this is the wavelength interval at which the apparatus scans (See figure 9).

There is also a doublet (figure 9), with two distinct peaks at 576.66nm and at
578.64nm, and so the spacing between these peaks is 1.98nm.

Again, each of these is accurate to within 4.0± nm.

Figure 9.    The Mercury doublet.



These values compare with the following, canonical values:

404.656nm, 407.781nm, 435.835nm,  491.604nm (weak), 546.074nm (green)5.

The doublet is found to have peaks at 576.959nm and 579.065nm (yellow-orange),
giving a doublet spacing of 2.106nm.6

The optical resolution of the system at any one of the peaks is taken to be the full
width at half maximum height (FWHM) at said peak.  The chromatic resolving

power is defined as 
λ

λ
∆

≡R , where λ∆ is the minimum wavelength difference

that the spectrometer can discern – here it is taken to be the FWHM.  It can be
shown that R is also equal to pN, where p is the order of the image and N is the
number of slits on the diffraction grating of the spectrometer.

We obtain values of optical resolution and chromatic resolving power from
figures the emission lines and tabulate these data:

Wavelength /
nm

λ∆ (FWHM) /
nm

( ) nm/λδ ∆ R Rδ

404.21 1.4 0.4 288 83
407.56 1.4 0.4 291 83
435.35 1.4 0.4 310 89
491.39 1.4 0.4 350 101
545.78 1.3 0.4 419 129
576.66 1.3 0.4 443 136
578.64 1.5 0.4 386 103

Table 3.

Now the FWHM can also be calculated from the formula 

FWHM = ( (Spectral Range) / (Number of Pixels) )× (Pixel Resolution)

Where the spectral range is the wavelength range recorded by the apparatus
(grating and detector together).  This is equal to 650nm.  The number of pixels is
the number of pixels in the CCD array – equal to 2048 here, while the pixel
resolution can be calculated as a function of the slit width – it is found to be
approximately six.  This is the number of pixels that respond to a monochromatic
input.

Thus, FWHM = 1.9nm, and this is comparable to the value obtained previously.
It is not possible in this calculation to find the resolving power from the number
of slits on the grating, N, because while the number of slits per mm is given, the
width of the grating is not.

Experiment 3

5 Jenkins, F A and White, H E , Fundamentals of Optics, 4E, McGraw-Hill, 1976.
6 Ibid.



This experiment aims to do the following:

• To determine the thickness of a ZnTe film, assuming that this film is non-
dispersive.

• To estimate the dependence of the index of refraction of this film on
wavelength.

• To determine the bandgap of ZnTe.

Figure 10.  Transmission as a function of wavelength for light incident on the
ZnTe sample (Interference maxima and minima).

Wavelength of Minima / nm Wavelength of Maxima / nm
605 590
630 620
655 640
680 670
725 700
750 735
795 775
745 820
770 870
900 930
970 1000

nm5±=δλ

Table 4.  The wavelength at which successive maxima and minima of intensity
occur.  

For adjacent maxima we have that
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And clearly this formula holds for adjacent minima as well, where
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Where n is the index of refraction of the sample – assumed constant, m is the
order number (unknown) and t is the thickness of the sample.

From these formulas, it is apparent that the order number m must decrease with
increasing wavelength.

From equation (5), we see to determine t, we must plot 1+− mm λλ  against mm λλ 1+ ,
and this is done in the foregoing figure.
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Figure 11.  Plot of 1+− mm λλ  against mm λλ 1+ .

Thus, we see that
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The non-linearity of the graph arises from the fact that n is not in fact constant.

Back-substitution now yields the order-number, m.  Thus, for nm605max =λ , m =
15.  We have therefore found each of the quantities which determine n, the index
of refraction, and can therefore plot n versus λ, in order to find the dispersion
curve.
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Figure 12.  The dispersion relation: a plot of the index of refraction n, against the
wavelength, for the ZnTe sample.

Near the bandgap of the ZnTe sample, absorption is strong, and T , the
transmission coefficient, is small there.  In this region, the absorption and
transmittance are related by

( ) ( ) teRRT α−−−= 21 11 (6)



where R1 and R2 are the reflection coefficients of the air / film interface and the
film / substrate interface, respectively.  These coefficients are given by

( )
( )
( )
( )

114.0

315.0
1
1

2
1

2
1

2

2

2

1

=
+
−=

=
+
−=

nn
nnR

n
nR

Thus, ( ) ( ) ( )





=



 −−

=
TtT

RR
t

T 611.0log111
log1 21α (7)

Furthermore, near the bandgap, we have the following equation for the

dependence of the absorption coefficient α, on the photon energy 
λ
hc

:



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λ
α 22 (8)

Where gE  is the energy of the bandgap.

Plotting the photon energy 
λ
hc

 against the square of the absorption gives the

energy of the bandgap – it is the y – intercept.  
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Thus, eVJEg 3.02.2105.05.3 19 ±=×±= −



Experiment 4:

This experiment aims to do the following:

• To measure the absorbance spectrum of the 10-5 M solution of the laser
dye rhodamine 6G in ethanol and to calculate the peak value of the
absorption cross section of the dye molecule.

• To measure the fluorescence spectrum and calculate its red shift
relative to the absorption spectrum.

Now the transmitted intensity, relative to the incident intensity, is given by the
Lambert-Beer Law:

( ) ( ) teItI µ−= 0
(9)

Where µ is related to the absorption cross section σ (of one molecule), by σµ n=
, where n is the concentration of molecules.  

Now the absorbance A is defined by the formula

( )
( ) tnt
tI

IA σµ === 0log ` (10)

Figure 14.  The absorption curve for the Rhodamine dye.  There are
discontinuities in the wavelengths in the neighbourhood of 500 nm because the
apparatus had not been adjusted so as to give an everywhere non-zero value of
transmission.



Thus, 
nt
A=σ  and from the figure 14, we get that

( ) ( )
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The red shift of the fluorescence spectrum, relative to the absorption spectrum, is
the wavelength interval between the fluorescence maximum and the absorption
maximum, and this is found to be nm520 ±=∆λ , by inspection of figures 14 and
15.

Figure 16.  The transmission curve for Rhodamine.



Conclusions:

In this experiment, the sensitivity of the apparatus was investigated by studying
the observed spectrum of tungsten, and by a suitable comparison with the ideal
blackbody emitter.  This led to the plot sensitivity as a function of wavelength
given in figure 8.

The characteristic spectral lines of mercury were observed and found to lie at
404.21nm, 407.56nm, 435.35nm, 491.39nm and 545.78nm.  The doublet lines
were observed at 576.66nm and at 578.64nm.  These results are accurate to within

4.0± nm.

These results were used to compute the optical resolution of the apparatus, found
to be 1.5 nm.

The thickness of a ZnTe sample was found by using methods of interference.
This  was  measured  to  be  mµ3.03.1 ± .   The  bandgap  of  ZnTe  was
subsequently  measured  and  was  found  to  be  eVEg 3.02.2 ±= .   This
compares with the actual value of 2.4eV.

Finally, the Rhodamine dye was studied and its absorption cross section was
measured.  The result  obtained for the maximal value of cross section was

220
max 102.08.3 m−×±=σ  .  The red shift of the emission spectrum, relative

to the absorption spectrum was found to be nm520 ±=∆λ .


