
Fractals – Lennon O Naraigh (JSTP)

Abstract:

This experiment seeks to analyze the morphology of zinc electrodeposits using fractal
geometry.  The zinc electrodeposits are formed and are seen to assume four structures:
dense radial, diffusion-limited aggregation (DLA), dendritic and stringy.  The
structure-formation as a function of voltage and the concentration of the zinc sulphate
in an aqueous solution is observed and a phase-diagram of this dependence is plotted
below.

Basic theory and equations1:

An example of a fractal  is the Koch curve, a stage of whose generation is shown
below.

Thus the curve encloses a finite area but is of infinite length.  Further, the Koch curve
is  everywhere  continuous  but  nowhere  differentiable.   More  worrying  still  is  the
prospect that this curve has a non-integral dimensionality.

Dimensionality in Euclidean space:

Consider a line segment of length a0 in ordinary (Euclidean) space.  Divide the line
into a large number of equal subdivisions of length  0aa << .  Similarly, consider a
square of sides of length a0 in space and divide it up into many small squares of sides
of length a, with 0aa << .  Finally, consider a cube with sides of length a0, and divide
it up into many smaller cubes of sides of length  a, with  0aa << .  In each case, the
number of subdivisions, written as N(a), is given by
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d is the dimensionality of the object and for the cases here is either 1, 2 or 3.

Thus, taking (natural) logs on both sides, we get the following:
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If we determine the dimensionality of a given object using the above formula, we call
this the fractal dimension, dF.  We therefore have the identity
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We can therefore define a  fractal: it is an object or a set with a non-integral fractal
dimension that demonstrates the property of self-similarity.

If  a  fractal  curve  has  dimensionality  dF in  a  Euclidean  space,  we  shall  call  the
dimensionality of that space  dE .  I.e.  dE is the dimension of the space in which the
fractal object is embedded.  We have that EF dd < .

A prime example is the Cantor set, which is got by considering the interval [0,1] of
the real line.   We remove the middle  third of this  interval.   We then remove the
middle thirds of the remaining two intervals, and so on.  The set is self-similar in the
sense that if we consider the set at any stage of its generation, and at some later stage,
then a magnification of the set at this later stage will have the same appearance as the
set at the previous stage of generation.

We  can  compute  the  fractal  dimension  of  the  Cantor  set:   We  consider  the  nth

subdivision – of length a – of the line of length 1, and so we have that  na
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For the Koch curve, we have, for the nth stage of its generation, that N(a) = 4n.  Since
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There is a two-dimensional analogue of the Cantor set: we consider the unit square in
R2 and divide it up into 32 = 9 sub-squares.  We then remove the middle sub-square
and repeat the procedure for the remaining eight squares.  This procedure is repeated

indefinitely and a fractal dimension 
3log
8log=Fd  is obtained.  This fractal is called the

Sierpinski carpet.  It is easy to generate a Sierpinski carpet with Euclidean dimension

N.  Its fractal dimension is then 
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We can calculate the fractal dimension dF by the so-called box-counting method.

We construct boxes of length l (or alternatively, we can construct spheres the diameter
of whose great circles is l) in such a way as to cover the fractal curve.  We then find
the minimum number of boxes required.

Let  l be the length of the box and let  N be the number of boxes.  We find that the

following result holds: 
l

N 1loglog ∝ .  This is a consequence of equation (2).  Plotting

Nlog against  
l
1log  gives the slope of the line,  D.  Thus, if  ( ) DllN −∝ , then, in the

limit as 0→l , D is called the box-counting fractal dimension.

Now this discussion focuses on mathematical objects – ideal fractals.  The structure
the zinc assumes in this experiment cannot be self-similar on all scales – the finite
size of the structure sets  an upper limit  on the self-similarity.  As mentioned,  the
fractal structure falls roughly into four categories – dense radial, DLA, dendritic and
stringy.  These expected structures are shown below:

(a) Dense Radial (b)  Diffusion Limited

(c)  Stringy (d)  Dendritic

Figure 1: Expected fractal patterns2.



The DLA structure is modelled as follows: given a sea of particles in random motion,
we can imagine one fixed particle at the centre.  This particle becomes “sticky” and,
when another particle comes in contact with this central particle, the latter particle
stops moving and becomes another “sticky” site.   Thus,  the fractal  grows radially
outward.

Method:

Aqueous solutions of zinc sulphate of varying concentrations are made.  The fractal
structures are then grown by applying a voltage across the solution.  The field is
radial.  When the deposit is grown, an image is obtained using a CCD camera.  The
image is saved to a computer and is analyzed using a program which calculates the
fractal dimension of the structure.

Results:

Here are the images of the fractals obtained for a given voltage and concentration of
the zinc sulphate in the aqueous solution.  In each case, the slope gives the fractal
dimension, dF.

Figure 2:

(i) 5V, 1 molar solution.  Stringy



(ii) 2.5 V, 1 molar solution.  DLA



(iii) 5V, 0.5 molar solultion.  Dendritic





(iv) 15V, 0.5 molar solution.  Stringy



(v) 5V, 0.1 molar solution.  Dense radial



(vi) 15V, 0.1 molar solution.  Dendritic.



(vii) 11V, 1 molar solution.  Stringy



(viii) 5V, 0.05 molar solution.  Dense radial.



(ix) 15V, 0.05 molar solultion.  Dense radial.
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Figure 3:  The phase diagram.  Too few data points were obtained to divide up the the
space conclusively.  (For example, D Grier et al.4took 250 data points.)However, the
results compare well with those shown below5 (for the same zinc sulphate).

Here, “open” refers to the DLA structure and “homogeneous” refers to the dense
radial structure.

Conclusion:

The fractal dimension of each of the grown fractals was found.  The phase diagram for
the fractal structure as a function both of applied voltage and zinc sulphate
concentration was plotted, and was found to agree with the expected plot.
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