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Abstract:

This  experiment  assumes  that  the  notion  of  Range is  applicable  to
alpha particles and sets out to calculate said range.  In the course of the
experiment,  the  dependence  of  the  range  on  the  geometry  of  the
apparatus will be investigated.

In the experiment, it was found that cmR 1.04.3 ±=α  for air at room
temperature and atmospheric pressure.  This compares well with the
accepted  value  cmR 4.3=α

1.   An  estimate  of  the  range  of  alpha
particles in water was obtained from the Bragg-Kleeman rule, and was
found to be ( )[ ] AirWater RR %01.016.0~ ± .

1 H.A. Bethe, U.S. Atomic Energy Commission, Document BNL-T-7, 1949.  Energy of alpha-particles:
4.88MeV.  These were the conditions of the experiment:   Temperature of Air: 15oC; Pressure: 760mm.



Basic Theory and Equations:2

A realization of the foregoing theory is by 4.88MeV alpha particles (ions with z = 2)
travelling through air.  These are NR ( smv /10~ 7 ).  Alpha particles are highly
ionizing and we expect these to interact strongly with matter.  Thus, we expect the
intensity of α-radiation to fall off steeply with source-detector distance and this will
define the range – the distance at which the intensity becomes zero.  This situation is
contrasted with electrons, which do not interact so strongly with matter and thus do
not exhibit the same strong range-intensity dependence.

The rate of a particle’s (ion’s) energy loss, per unit path length, as it passes through a
medium, is known as the stopping power,  S  ̧of the medium.  A quantum-mechanical
derivation including relativistic effects was first carried out in 1930 by Bethe and
Bloch, and their formula is quoted here:
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Where cv β=  is the ion velocity and ze is its electronic charge in e.s.u.’s, m the mass
of the electron, A, Z, ρ are the atomic mass number, the atomic number and the
density of the stopping material, respectively.  I is the mean energy required to ionize
a particle of the material and is about 86eV for air.  As usual, terms in β can be
dropped in the non-relativistic (NR) limit.

In a naïve treatment of equation3 (1), we might proceed in the following way:
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2 John Lilley, Nuclear Physics, Principles and Applications, (Wiley, 2002), pp. 130 – 136.
3 http://www.maths.tcd.ie/~olly/Lab.html (Oliver Kelly)
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However, this analysis is wrong.  The integrand in (3) has a singularity at 
m

IM
E

4
α= ,

i.e. when the travelling alpha particle has its energy reduced to ~157 KeV.  This
reflects the fact that Bethe’s formula is valid only in a high-energy limit.  For, in the
low-energy limit, the slow-moving alpha particles can themselves capture electrons,
yet Bethe’s formula does not consider this.  The range, therefore, must always be
calculated semi-empirically:
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SB is the stopping power according to Bethe’s equation, valid in the range ],[ 20 TE .  SE

is a function determined experimentally by fitting a curve to a stopping power versus
energy dataset in the interval ],0[ 1T , while “spline” is a cubic spline function fitted on
the interval [ ]21 ,TT  to ensure continuity between SB and SE.  Typical values are T1 = 
1.0 MeV for helium ions, and T2 =  2.0 MeV for helium ions.4  

This semi-empirical approach gives a power law for R:5

...=R , E0 in MeV (5)

(At STP).

Thus, for a 5 MeV alpha particle, R = …

4 http://physics.nist.gov/PhysRefData/Star/Text/programs.html
5 reference for power law



Figure 1.  Stopping Power, S, as a function of initial energy, E0.  The decreasing tail
represents the energy interval in which Bethe’s formula is applicable.  The low-
energy limit is given by the empirical calculation, while the two regimes are joined
continuously by a cubic spline.  (From http://physics.nist.gov/cgi-
bin/Star/ap_table.pl).

This compares with the standard, experimental value for a 5 MeV alpha particle at
STP got from the following calculation:

23 /10368.4 cmgR −×= 6

( ) ( ) cmcmgcmgR air 49.3/103.1/10368.4 3323 =×=××=⇒ −− ρ

6 http://physics.nist.gov/cgi-bin/Star/ap_table.pl



For any material, we see from equation (1), or from intuitive considerations, that
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.  Dividing equation (1) by ρ and considering one kind or projectile only, we

get 
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Here, the factors 
A
Z

 and the logarithm vary slowly.

The Bragg-Kleeman rule estimates the density-dependence of the range through the
following empirical relationship:
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Where the indices 1 and 2 refer to the first and second media, respectively.

As well as the I¸E and ρ dependence of the stopping process outlined, there is a
statistical element involved.  For, there is a variation in the energy transfer per
collision and in the amount of ionization produced by a given energy loss distance
travelled.  Thus, there is a spread in the observed range of monoenergetic particles,
called straggling.  However, this is not significant for heavy charged particles like
alpha particles – for 5MeV alpha particles, the standard deviation of the range
distribution is about 1%7

Figure 2.  Relative intensity as a function of distance travelled for alpha particles and
electrons.  After Lilly, p. 136.

This suggests that we can model the relative intensity as a function of distance as a
Fermi function:
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Detection of Alpha Particles:

7 Lilly, p 134.



In this experiment, we use a photomultiplier tube as a counter, whose entrance
window is coated with ZnS scintillator powder.  The pulses from the photomultiplier
pass via an amplifier to a pulse counter.

There are two types of scintillator powders.  One is organic, and such a material is not
a semiconductor.  Such a material has two widely spaced electronic energy levels E0

and E1, say, and around these levels there are many vibrational levels V01, V02, …; V11,
V12, … An incident particle interacts with the scintillator powder and raises the
molecules of the material from a 0 level to a 1 level.  The material then deëxcites and
emits a scintillation photon in the visible range.  Because of the level scheme, very
few scintillation photons can raise the material itself to an excited level.  Thus, the
scintillator powder is transparent to its own radiation.

The other type of scintillator powder is inorganic and many of these are alkali halides,
such as NaI.  Such materials crystallize and have semiconductor properties.  Thus,
there is a filled band (a group of adjacent electronic states in k-space) and an unfilled
band, separated by a bandgap.  Incident, energetic particles can cause the excitation of
a valence electron (electron in the filled band) into the conduction band (the empty or
part-filled band).  On deëxcitation, the electron emits a scintillation photon.  However,
in general this photon is in turn, capable of exciting a valence electron, and so such a
material is not transparent to its own radiation.  It is only through the addition of a
small amount of impurity to the crystal that the transparency can occur.  For, the
impurity provides the electron with allowed states in the bandgap, and deëxcitation
from these states will not lead to a photon capable of reëxciting electrons.

Figure 3.  Energy level schemes for organic and inorganic scintillator powders.



Method and Results:

(i) To  measure the count rate C as a function of the source-detector distance,
d.

The following graph was obtained:
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Figure 4.  Plot of Count rate, C, against the source-detector distance, d.

This curve is not found to decrease to zero as sharply as the Fermi function.  This is
because the probability of detection by the counter is proportional to the area of the
detector (a constant), and the source-detector distance only.  Thus, in later sections,

we study the quantity ( )df
d
dC ,,φθ=
Ω

, while here we examine ( )∫=
π

φθ
4
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(ii) To measure the count rate per unit solid angle (
Ω
C

) against the source-

detector distance d, assuming that the source is point-like and the detector can be
modelled as a spherical cap.  

Now the spherical cap is the curved surface area of a segment of sphere, although this
is approximated by ( ) 2533.0 cmRA aperturecap =≈ π , where Raperture is the radius of the

detector aperture.  Thus, we approximate Ω by 2d
Acap

The exact result is obtained from integration and the derivation is in appendix 1:
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This dependence is exhibited in the following graph:
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Figure 5.  Plot of Solid angle against the distance x for a point-like source and a
spherical cap.  (Geometry illustrated in appendix A).



The following plot was obtained for 
Ω
C

 versus d.
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Figure 6.  Plot of count rate per solid angle as a function of source-detector distance,
d for the assumption of point-like source.  A smooth curve has been fitted.

This gives a value for the range of cmR 1.04.3 ±=α .  This compares with Bethe’s
value of  cmR 4.3=α



(iii) Examining the behaviour of 
Ω
C

 as a function of d assuming that the source is

finite in extent:

The geometry of this situation is considered in appendix 2.  We get the following
calibration curve for Ω as a function of R / d, and we estimate the functional form as a
power series, truncating after five terms.
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Figure 7.  Plot of Solid angle against source-detector distance d.  (Geometry
indicated in Appendix B).



The following plot of 
Ω
C

 as a function of source-detector distance d is obtained:
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Figure 8.  Plot of count rate per solid angle as a function of source-detector distance,
d for the assumption of non-point-like source geometry.  A smooth curve has been
fitted.

Again, we find that cmR 1.04.3 ±=α .



Further Questions:

We could estimate the range of alpha particles in water using the Bragg-Kleeman rule,
mentioned in the Theory section:
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Where A is the mass number of the medium in which the ions travel.

Taking cmRair 5.00.3 ±=  from the first experiment, 7=≈ Nitrogenair AA , 10≈WaterA

(defining an “effective” mass number for water as 8 + 1 + 1) and 3/299.1 mkgair =ρ 8,
we get

AirWater RR %)16.0(~

It is more difficult to arrange a similar experiment for electrons (say).  This is because
electrons interact less with matter and are more likely to pass through a material
unaffected.  Thus, we would expect a more gradual fall off in electron intensity as a
function of source-detector distance, making the notion of range difficult to apply.

The anomaly in figures 6 and 8:

In both figures 6 and 8 we see that the count rate per unit solid angle starts to increase
once the range has been reached.  This may be due to gamma emission by excited Po
nuclei.  For, an alpha particle may tunnel out of the nucleus at a lower energy than the
expected 4.88 MeV.  The unstable nucleus must then decay to the ground state by the
emission of a gamma ray.  It is possible that this gamma radiation explains the non-
zero intensity observed once the travelling alpha particles have exceeded their range.

Uncertainty in Measurements:

In the second experiment, the sources of error are the following:

• The usual measurement errors (distance d, count rate C: NN =δ ).
• The error incurred by reading the range from figure…

In the third experiment, the sources of error could be found among the following:
8 http://wright.nasa.gov/airplane/airprop.html At STP



• The error incurred in fitting a polynomial to the datapoints of ( )dΩ .  This
manifests itself in the large error bars in figure…  These were derived from
the following considerations:
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• The sparsity of data points in the critical region where the intensity falls to
zero (or to background) rapidly.

Conclusions:

In this experiment it was found that the range of alpha particles in air is
cmR 1.04.3 ±=α , which agrees with Bethe’s result.  This measurement was

accomplished by first of all assuming a point-like source and subsequently, by
correcting for this assumption.  In both cases, the result was the same.

The Bragg-Kleeman rule was used to estimate the range of alpha particles in water,
and this was found to be mµ354 ± .  This is to be compared with 38µm for 5 MeV
alpha particles in liquid form.9  This suggests either that the Bragg-Kleeman rule is
capable only of predicting relative ranges only to orders of magnitude, or that  we find
a more sophisticated way of defining “effective mass numbers” for molecules such as
water.  This question should certainly be investigated.

9 http://physics.nist.gov/cgi-bin/Star/ap_table.pl



Appendix 1:  

The derivation of the equation ( )
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Assume a point-like source radiating into a spherical cap and viewed in the coordinate
system shown below:
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Appendix 2:

The source of finite extent:  It is not legitimate to model the apparatus as a spherical
cap-like detector and a point-like source.  Indeed, the source is finite in extent and this
becomes important for small source-detector distances.

In the case of a circular disc of radius S facing another smaller circular disc of radius
R (figure…), the solid angle at one disc subtended by the other is

( )

∫

∫Ω
=






Ω

S

S

xdx

xdxxRd

d
S

d
R

0

0

,,
,

(10)

We tabulate 




Ω

d
S

d
R ,  for the special case where R = S  and find all values of ( )dΩ

by means of a graph (figure 7).  With this assumption, the source and detector have
the same surface area.


