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Abstract:

This experiment seeks to investigate the first excitation potential of mercury using the Franck and Hertz partial current method and to find a value for this potential. The I – V characteristic of mercury will be found.  This is in fact a series of current maxima.  It was found that the first excitation potential of mercury was 
[image: image1.wmf]V

3

.

0

5

.

5

±

, which compares with a theoretical value of 4.9V (computed below).  This discrepancy is accounted for by some systematic errors, which are mentioned below.
Basic Theory and Equations:
The Franck and Hertz experiment was the first experimental confirmation of the idea that an atom has discrete energy states.  Under certain conditions, the collision of a neutral atom with a fast-moving electron will result in the excitation (or possibly the ionisation) of the atom.  Here we must distinguish between elastic and inelastic collisions.  An elastic collision is one in which an incident electron collides with an atom, is scattered, and emerges with its incident kinetic energy intact.  An inelastic collision is one in which the energy of the incident electron is partly or wholly absorbed by the atom.  This causes the atom to move to an excited state.  The atom returns to its ground state either by radiating electromagnetic radiation, or by dissipating its energy by random collisions with neighbouring atoms.
The apparatus of the Franck and Hertz experiment is used to investigate such collisions and it resembles the following schematic diagram.
(Insert Figure 1 of schematic diagram)

Electrons are emitted from the filament F by thermionic emission and move across the potential difference V1.  A tube of mercury is present in this position and so the electrons undergo collisions with the mercury atoms.  If V1 is small, no inelastic electron-atom collisions occur, and so we can assume conservation of mechanical energy:
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Where e, m and v are the electron’s charge, mass and velocity, respectively.  

A a retarding potential V2 (of magnitude 1.5V) is also present.  This ensures that electrons of kinetic energy greater than 1.5 eV arrive at the plate P.

As V1 is increased from zero, the current I in the circuit grows steadily.  However, V1 eventually reaches a value such that inelastic collisions occur. These collisions will occur just after the electron has gained kinetic energy 
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.  Such a collision results in the transition of a valence electron of the mercury atom from a 61S0 state to a 63P1 state.  Now a valence electron which falls from the higher state to the lower state emits a photon of frequency 
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.  By Planck’s law, E = hf, and so this corresponds to an energy difference of 
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, or 4.89 eV.  This energy difference corresponds to the first excitation potential of mercury, which is 4.89V
For inelastic collisions therefore, the electrons lose energy and are unable to overcome the retarding potential and reach the plate.  However, we can thereafter increase the voltage further to accelerate the electrons again, after their elastic collisions.  Thus, the electrons again gain enough energy to overcome the retarding potential.  We continue to increase the potential until the electron undergoes two inelastic collisions, and so the current falls to a new minimum, followed by a new maximum.  As the voltage V1 is increased, many maxima are observed.
(Insert Figure 2 of I – V characteristic)

The distance between consecutive current maxima will give the first excitation potential of mercury.
Sketch of Apparatus:
(Insert Figure 3 of apparatus) 

Method:
1. The oven was heated for 30 minutes, so that the mercury therein would have a temperature of 150oC.

2. The apparatus was set up as in figure 3.

3. When the oven reached the correct temperature, the voltage across the filament was applied, and thereafter left fixed.  The voltage V1 was  applied.  V1 was increased in increments of 2V and the corresponding current on the picoammeter was observed.

4. The I – V characteristic was plotted.

Results:
The I – V characteristic was found from the following table of data:
	V / Volts
	Imin / Nanoamps
	Imax/ Nanoamps
	Iav Nanoamps
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	0
	0.00
	0.01                       
	0.005
	0.01

	2
	0.00
	0.01
	0.005
	0.01

	4
	0.75
	0.76
	0.760
	0.01

	6
	4.76
	4.84
	4.800
	0.06

	8
	0.89
	0.86
	0.875
	0.02

	10
	7.88
	8.00
	7.940
	0.060

	12
	3.88
	4.05
	3.967
	0.085

	14
	6.20
	6.70
	6.450
	0.350

	16
	19.70
	20.05
	19.88
	0.175

	18
	6.95
	7.55
	7.250
	0.250

	20
	21.85
	23.44
	22.65
	1.124

	22
	27.58
	27.80
	27.69
	0.156

	24
	32.92
	34.53
	33.73
	0.881

	26
	26.33
	35.06
	30.70
	6.173

	28
	72.83
	74.44
	73.64
	1.138

	30
	57.44
	58.80
	58.12
	0.961
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Remark on Uncertainty:  While one is not statistically justified in taking the standard deviation of two values, 
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 should be a reasonable estimate of the uncertainty in I.  Otherwise, we would have to take an error of 0.005 nanoamps (half the smallest measurement unit). This could correspond to a fractional error of 50% in the first reading and 0.5% in the last reading.
(Insert Graph)

In all, five current maxima were observed.  The first maximum was observed at V = 
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The first excitation potential was found by measuring the distance between the first and and second maxima and the second and third maxima, and taking the average.  The other current maxima were not included because the double peak at the fourth maximum suggested that the moving electrons were undergoing back-scattering – that is, were colliding with other, ionised electrons.  
First maximum:


[image: image12.wmf]V

5

.

0

0

.

6

±


Second maximum:

10.5
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0.5V
Third maximum:

16.0
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0.5V
Average distance between consecutive maxima:  5.0
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Thus, the excitation potential was found to be 5.0
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0.5V, which compares with the actual value of 4.9V
The mean free path of the electron in the mercury vapour was calculated using the following data:

Temperature of mercury vapour: T = 423K
Pressure of mercury vapour: 
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Where R is the radius of a mercury atom.
(See appendix 2 for a derivation of this formula.)

Since the first current maximum is observed at 
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rather than at 5.0 V, this means that there is a contact potential difference of 
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between fk and g2.  The error-propagation makes this result very uncertain.
Conclusion:
The first excitation potential of mercury was found to be 
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, which compares with an actual value of 4.9V.  Two sources of systematic error explain this result.  The mean free path of the electron was found to be…

Thus, this experiment succeeded in calculating the first excitation potential of mercury to sufficient accuracy, and in demonstrating the very real presence of the quantization of energy levels of valence electrons.

***

Appendix 1:  List of Plots
I – V characteristic.

Appendix 2:
Derivation of Equation 2:
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A collision will occur if a mercury atom comes within a cylinder of length l (arbitrary) and of radius 
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, which the electron sweeps out as it moves through the mercury gas, the molecules of which are assumed to be stationary.  Thus,
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, where  is the number of mercury atoms per unit volume and 
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 is the radius of a mercury atom.

Now we assume that the mercury satisfies the Ideal Gas equation, viz. 
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Thus, 
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, and so 
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This is a very crude formula: it assumes that the mercury atoms are stationary and that they satisfy the ideal gas equation (this will be a reasonable assumption for large T), and so in applying this formula we can only expect the result to give the right order of magnitude.
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