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Chapter 1

Lebesgue Measure

1.1 Algebra of Subsets

Definition Let X be a set. A collection A of subsets of X is called an
algebra of subsets of X if

l.Ohe A
2 Fe A = EFecA EF={reX:z¢FE}

3. F,....E,e A = FE UEU---UE; € A. ie., Ais closed under
complements and under finite unions. Hence A is closed under finite
intersection. (because EyN---NE, = (B, U---UE}'))

Example Let Z be the collection of all finite unions of intervals in R of the
form:

L (e, ={zreR:a<z<b}
2. (—oo,bl={zeR:z<b}
3. (a,00)={r€R:a<z}
4. (—o0,00) =R

7 is an algebra of subsets of R, called the Interval Algebra.




We want to assign a ‘length’ to each element of the interval algebra Z, so
we want to allow ‘oo’ as a length. We adjoin to the real no’s the 2 symbols
oo and —oc to get the Fxtended Real Line:

Definition The Eztended Real Line:
R U {—00,00} = [—00, ]
We extend ordering, addition, multiplication to [—o0, co] by:
l. —co<z<ooVzeR
2. Addition
(a) co+oo=z+00=00+2 =00

(b) (=00) 4 (—o0) = 2+ (—00) = (—00) + x = —0

(Don’t define oo + (—00) or (—o0) + 0©.)
3. Multiplication

(a) 0000 =00 = (—OO)(—OO)

(b) oo —00)00 =
oo x>0
(¢) zoo=o0r =< 0 z=0
-0 <0
-0 >0

Definition If A C [—o00, o0] then
1. supA = oo if oo € A or if A has no upper bound in R.

2. infA = —oc if —oo € A or if A has no lower bound in R.

Definition Let A be an algebra of subsets of X. A function m : A — [0, o0]
is called a measure on A if:

L. m(@) =0

Jif E = U Ej; is countably disjoint with E; € A Vj then m(E) =
ZJ 1 m(EJ). (m is Countably Additive.)



Q) 1D

Figure 1.1: F is a disjoint union of sets

Note:

1. Countable means that Ey, F»,... is either a finite sequence or can be
labelled by (1,2,3,...).

2. Disjoint means that E;NE; =0 Vi# j
3. m(E) =327, m(E;) means either:

(a) D272, m(E;) is a convergent series of finite no’s with the sum of
the series as m(FE)

(b) >°72,m(Ej) is a divergent series with m(E) = oo

(c) m(E;) = oo for some j, and m(E) = oo

1.2 The Interval Algebra
Definition For each E € Z, the interval algebra (See Section 1.1), write
E=FEU---UE;

(disjoint) where each FE; is of the form (a, b], (—o0, b], (a, ), or(—oc, o0). The
length of E is m(E) = m(E,) + m(Ey) + - - - + m(Ey) where m(a,b] = b — a.

m(—o0, bl = m(a,00) = m(—o0,0) = 00
Definition a set V' C R is called an Open Subset of R if:
foreacha € Ve >0 st.(a—€,a+e)CV
[ e ]

( ) ’ ]

a—¢€ a a—+e

i.e., every point is an interior point: it has no end points.



Theorem 1.2.1. (Heine-Borel-Lebesgue) The closed interval is compact.

Let {Vi}ier be a family of open sets in R which cover the closed interval
[a,b]. Then 3 a finite number of them: Vi,,..., Vi, (say) which cover [a,b]
(i.e. [a,b] CV;; U---UV.)

Proof. Put

K ={z € [a,b] s.t. 3( finite set {i1,...,i,} CI s.t. [a,2] CV;;U---UV; )}

[ ]
; ‘ }
aeK = K#
Let
c=sup K
Then

a<c<b ceV; (say)

V; is open, therefore

Jde>0st. (c—€c+e) CV;

and

dke Kst.c—e<k<c,

[aak] C ‘/;:1 U.'.U‘/;r (SaY)
Then

[a,min(c+ 2,b)] € (Vi U+ UV, UT)
therefore
min(c + g,b) eK

But c+§ ¢ K (asc=supK) = b€ K as required. O
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1.3 The length measure
Theorem 1.3.1. The length function

m:Z — [0, 0]
is a measure on the interval algebra T

Proof. We have to check that m is countably additive, which reduces to
showing that if

o0

(a,0] = | J(aj,b5]

j=1
is a countable disjoint union then

o0

D (b — ay)

Jj=1

is a convergent series with sum b — a.
Take the first n intervals and relabel them:

(CL1, bl]a ) (an; bn]

so that:

a al b1 as by a3 b3 an bn, b
then

Z;'Z:l(bj - aj) =b —a +by—ay +bs—az +--- +b,—a,
<ay—a +az3—ay “+a4—a3 +--- +b—a,
=b—-a

therefore

j=1
converges and has sum < b —a
Let e >0 and put € =5, €1 = §,...,6 = 551, - - -
soe;>0and )77 ¢ =¢
Then

(CL —€0,Q + 60)’ (ala bl + 61); (a21 b2 + 62)3 s

is a family of open sets which cover [a, b]

11



By the compactness of [a,b] 3 a finite number of these open sets which
cover [a, b, and which by renumbering and discarding some intervals if nec-
essary we can take as:

(CL - 60,&+ 6O)a (a'labl + 6l)a R (anabn + En)

so that:
a— € at+e a2 b2 + €2 an bn + €n
a a1 bi1+e as b3 + €3 an—1 bn—1+€n—1 b
b—a =a1—a “+ay—aq o0 HFan, — Apt +b—a,
< € +(b1 + €1 — al) +--- +(bn71 + €n—1 — anfl) +(bn + €n — an)
oo
<e + 2 i21(bj — ay)

is true V € > 0. Therefore

Therefore

as required. O
Let m :— [0, 0o] be a measure m on an algebra A of subsets of X.

Thenm(E) < m(F)
ECF = and
m(FNE')=m(F)—m(E) if m(F) # oo

Then
F=EU(FNE")

is a disjoint union, and

m(F) =m(E)+m(FNE)

12



Theorem 1.3.2. (m is subadditive on countable unions)

o0 o0

m() <3 m(E)

Jj=1

Proof. We proceed as follows:
Let
F,=FE UFEU---UE,

UB=EUEBNR)U(ENR)U---
j=1

m(U;il EJ) = m(El) +m(E2 N Fll) +m(E3 N FQ’) + ...
<m(Er) +m(E) +m(E3) o
hence the result: - -
m(|J Ej) <D _m(E;)
j=1 j=1
m is subadditive on countable unions. ]

1.4 The o-algebra

Our aim is to extend the notion of length to a much wider class of subsets of
R. In particular to sets obtainable from Z by a sequence of taking countable
unions and taking complements.

Definition an algebra A of subsets of X is called a o-algebra if for each

sequence
Ela E?a E3’ e

of elements of A, their union
E/UE,UE3U---

is also an element of A.
So A is closed under countable unions, and hence also under countable
intersections.

13



1.5 The outer measure

Definition We define the outer measure m associated with m to be the

function:
m : {all subsets of X} — [0, o¢]

given by:
m(E) = inf Y m(Ej)
j=1
where the inf is taken over all sequences E; of elements of .4 such that:

j=1

Theorem 1.5.1. m(E) = m(E) VE € A (i.e. v agrees with m on A)

Proof. 1. if
EeA
and -
EcC|JE; with E; € A
Jj=1
then: °
m(E) <) m(Ej)
j=1
therefore
m(E) < m(E)
2. if
EeA
then
E.0,0,...

is a sequence of elements of A whose union contains E. Therefore:
m(E) <m(E)+0+0+---

therefore
#(E) < m(E)

14



Theorem 1.5.2. E C F = m(E) < m(F)

Proof. if E C F then each sequence in A which covers F will also cover E.
Therefore:
m(E) < m(F)

O
Theorem 1.5.3. m is subadditive on countable unions
m(lJ E) <D m(Ey)
j=1 j=1
for all sequences E1, Fs, ... of subsets of X.
Proof. Let € > 0. Choose:
€p,€1,€2,... > 0
such that -
SO
§=0
choose B;; € A s.t.
EzCBrL]_UBiQU UBUU
and s.t. -
Y m(By) < m(E;) + &
j=1
Then
UE cJU By
i=1 i=1j=1
and o e -
S s, < S E)
=1 j=1 =1
therefore - .
m(J Ej) <D m(E)
j=1 j=1
as required. O
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Definition We call a subset £ C X measurable w.r.t m if:
m(A) =m(ANE)+m(ANE")

forall AC X
(E splits every set A into two pieces whose outer measures add up.)

A

E

1.6 Extension of measure to o-algebra, using
outer measure

We can now prove the central:

Theorem 1.6.1. Let m be a measure on an algebra A of subsets of X, m
the associated outer measure, and M the collection of all subsets of X which
are measurable with respect to m.

Then M is a o-algebra containing A and m is a (countably additive)
measure on M.

Corollary 1.6.2. the measure m on the algebra A can be extended to a
measure (also denoted by m) on the o-algebra M by defining:

m(E)=m(E) VE e M
i particular:

Corollary 1.6.3. the length measure m on the interval algebra T can be
extended to a measure (also denoted by m) on the o-algebra M of measurable
sets w.r.t. m. We call the elements of M the Lebesgue Measureable sets,
and the extended measure the (one-dimensional) Lebesgue Measure.

T C {Lebesgue Measurable Sets} C all subsets of R
length measure m Lebesgue measure outer measure m
(countably additive) (not countably additive
=> not a measure)
N\ ! /
[0, o0]

16



Proof. 1. ACM
Let Ee A let AC X

Need to show:
m(A) =m(ANE)+m(ANE")

For € > 0. Let
Fla F27 .
be a sequence in A s.t.
Ac|JF
j=1
and s.t.
> m(Fy) <m(A)+e
j=1
E
A
Fi
Then
m(A) <m(ANE) +m(ANE") since m is subadditive

< m(U;; FJ N E) +m(U§i1 Fj N E,)
<YL (BN E) + 305, m(E; N E)
2

o m(F;NE) +3 752 m(FNE) since ;NE,F;NE €A
and m =m on A

=2, m(Fj) since m is additive

17



therefore,
m(A) <m(ANE)+m(ANE") <m(A) +e¢
Ve > 0, and therefore
m(A) =m(ANE)+m(ANE")
as required.

. M is an algebra
let E,F e M;Let AC X

A
F
E
Then
m(A) =rm(l+2) +m(3 +4) since E € M
=m(l+2) +m(3) +m(4) since F € M
=m(l+2+3) +m(4) since £ € M
therefore
EFEUFeM

and M closed under finite unions.

Also, M closed under complements by symmetry in the definition.

. M is a o-algebra

Let E = J;°, E; be a countable disjoint union with E; € M. We need
to show that £ € M. Put

F,=E,UEU---UE,

18
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T

F,, € M since M is an algebra. Let A C X. Then

m(A) =m(ANF,) +m(ANE,") since F, € M

=Y m(ANEy) +m(ANE,) since Ey,...,E, € M,
and are disjoint

>N  m(ANE,) +m(ANE') since E' C F,/
is true Vn. Therefore:

m(A) > m(ANE) +in(ANE)

*
m(Ure, ANEy) +m(ANE') since m is countably subadditive ()

v

M(ANE) +m(ANE)

(A) since m is subadditive

vV
3

All the above are equalities:
m(A)=m(ANE)+m(ANE")

therefore
EeM

and M is closed under countable disjoint unions. But any countable
union:
ETUE,UE3U---

19



can be written as a countable disjoint union
EiU(E;nFYU(BsNnEB)U---

where
F,=FE, U---UE,

therefore M is closed under countable unions as required.

4. m is countably additive on M
Put A= FE in (*) to get

as required.
O

1.7 Increasing Unions, Decreasing Intersec-
tions

Definition We use the notation E; T E to denote that

E1CE2C"'CEjC"'

is an increasing sequence of sets such that

GEj =F
j=1

Definition We use the notation E; | E' to denote that

20



ElDEQD"'DEjD"'

is a decreasing sequence of sets such that

ﬁ@:E
j=1

Theorem 1.7.1. E; 1 E = lim;_,oc m(E;) = m(E)
Proof. 1. if m(E;) = oo for some j then the result holds
2. if m(FE}) is finite Vj then
E=EU(E;,NEYU(EsNEYU---
is a countable disjoint union and

m(E) =m(Ey) + [m(Ey) — m(Ey)] + [m(Es) — m(Ep)] + - -
= e m(E8) [ (E2) = ()] () = )]

= lim,, 0o m(E,)

as required.

O
Theorem 1.7.2.
E; | E ~ _
e | = Jmm(E) =m(E)
Proof.
(E1NE/")T(E1NE"
therefore:
hm m(E1 N Ej,) = m(E1 N E,)
j—00
and
lim [m(Ey) — m(E;)] = m(Ex) - m(E)
SO
lim m(E;) = m(F)
as required. O
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Example

1
——,b b
(@~ 8] Lla,b
[ [ ]
L1 | }
for Lebesgue measure m:
mla, b = lim, . m(a— +,b]

= lim,, y0o(b—a + %)
=b—-a

as expected.

1.8 Properties of Lebesgue Measure
We now show that the Lebesgue measure is the only way of extending the
‘length’ measure on the interval algebra Z to a measure on the Lebesgue

measurable sets.
We need:

Definition a measure m on an algebra A of subsets of X is called o-finite
if 3 a sequence X; in A such that

X; 1 X
and m(X;) is finite for all q.

Example the Lebesgue measure m is o-finite because:
(_na ’I’L] T R

and m(—n,n] = 2n is finite

22



Theorem 1.8.1. (Uniqueness of Extension) Let m be a o-finite measure on
an algebra A of subsets of X.
Let M be the collection of measurable sets w.r.t. m.

Let 1 be any measure on M which agrees with m on A.
Then I(E) = m(E) VE € M

Proof. Let E € M. Then for each sequence {A;}, A; € A covering E:

EC G A;
j=1
we have
UE) <> 2 U(A) =372, m(A;) sincel=mon A
Therefore,

(x) I(E) <m(E) by definition of the outer measure m

Now let X; T X and m(X;) finite, X; € A. Consider

Xi

E

By (*) it follows that
U(X; N E) = m(X; N E)

Take lim; o, to get I[(E) = m as required. O
As a consequence we have:

Lemma 1.8.2. Let m be the Lebesque measure on R. Then for each mea-
surable set E and each ¢ € R we have:

1. m(E +c) =m(E). m is translation invariant
2. m(cE) = |c/m(FE)

Proof. Let M be the collection of measurable sets

23



1. define a measure m, on M by
me(E) = m(E + ¢)
then
me(a, bl =m(a+c,b+c]=(b+c)—(a+c)=b—a=m(a,b

therefore m, agrees with m on the interval algebra Z. Therefore m,
agrees with m on M.

2. define a measure m, on M by
me(E) = m(cE)

Then
me(a,b] = m(c(a,b))

m(ca,cb] ¢ >0
=< m{0} c=0
mlch,ca) ¢ <0

cb — ca
=< 0

ca —cb
= |c|(b —a)
= |c|m(a, b]

Therefore m, agrees with |c/m on the interval algebra. Therefore m,
agrees with |c|m on M.

O

1.9 Borel Sets

Definition if V is any collection of subsets of X, we denote by G(V) the
intersection of all the o-algebras of subsets of X which contain V. We have:

1. G(V) is a o-algebra containing V
2. if W is any o-algebra which contains V then

VCcGYV)CWwW

24



Thus G(V) is the smallest o-algebra of subsets of X which contains V. G(V)
is called the o-algebra generated by V.

Definition The o-algebra generated by the open sets of R is called the
algebra of Borel Sets of R.

Theorem 1.9.1. The o-algebra generated by the interval algebra T is the
algebra of Borel sets of R.

Proof. Let V be the collection of open sets of R

1. (a,b] =52, (a,b+ %) is the intersection of a countable family of open

sets. Therefore (a,b] € G(V).

Therefore

I CGV)

and

G(Z) Cc G(V)

2. let V be an open set in R. For each a € V choose an interval I, € 7
with rational endpoints s.t. a € I, C V.

I

L
—

r—
-
(.

[—

v=J L

acV

so V is the union of a countable family of elements of Z. Therefore
Ve G(I)

implies

VCGIZ) = G(V)CGI)
So, combining these two results,

G(Z) = G(V) = algebra of Borel sets

25



We have:

Z C Borel Setsin R C Lebesgue measurable Sets in R

The following theorem shows that any Lebesgue measurable set in R can
be obtained from a Borel set by removing a set of measure zero.

Theorem 1.9.2. Let E be a Lebesque measurable subset of R. Then there
1s a Borel set B containing E such that

B—E=BnNEF

has measure zero, and hence

Proof. 1. Suppose m(E) is finite. Let k£ be an integer > 0. Choose a

sequence
Ila 127 I3> s

in Z such that -
Ec|JL
i=1

and s.t.

m(E) <Y m(L) <m(E)+

1
k

s

=1

Put By = ;2 I; then E C By, By is Borel, and

m(E) < m(By) < m(E) + %

Put B =(,—; Bx. Then E C B, B is Borel, and

for all k. So

since m(E) is finite.

26



2. Suppose m(E) = oc.

—(k+1) —k k k+1

Put
Ex={ze€E:k<|z|<k+1}

Then
o0
E=|]JE
k=0
is a countable disjoint union and m(FE}) is finite.
For each integer k choose a Borel set By s.t.
Ek C Bk

and
m(By — Ey) =0

Put B = J;-, Bx. Then E C B, B is Borel, and

B—ECG(Bk—Ek)

k=1
therefore . -
m(B—E)<> m(By—E)=)» 0=0
k=1 k=1
as required.
B B2
Eq Ey

27
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Chapter 2

Integration

2.1 Measure Space, Measurable sets

Definition We fix a set X, a g-algebra M of subsets of X, and a measure
m on M. The triple (X, M, m) is then called a measure space, the elements
of M are called the measurable sets of the measure space.

Definition We call a function
f:X — [-00, 0]

measurable if
J (@00 = {z € X : f(a) > )
is a measurable Va € R.

R

>a >a

Example The collection

{E CR: f~'(E) is measurable}

29



is a o-algebra containing the sets

{(e, f]: @, B € R}

therefore contains the Borel sets. Therefore f~! is measurable for each Borel
set B C R.

2.2 Characteristic Function

Definition If £ C X, we denote by xg the function on X:

1l z€k
XE(“’):{O t ¢ E

X is called the characteristic function of E.

R

Definition A real valued function
p: X —R
is called simple if it takes only a finite number of distinct values
a1, 09, ..., 0,
(say). Each simple function ¢ can be written in a unique way as:
¢ =a1Xp, + + anXE,
where agy,...,a, are distinct and
X=FU---UE,

is a disjoint union.

30



2.3 The Integral

Definition If ¢ is a non-negative measurable simple function with ¢ =
mXe, + -+ anxe, ; X = By U---UE, disjoint union we define the integral
of ¢ w.r.t. the measure m to be

/ $dm = aym(Ey) + - - + awm(Ey) € [0, o]

R

E, E,

Recall that 0.00 =0, a.00 = > if @ > 0.

Definition if F is a measurable subset of X and ¢ is a non-negative mea-
surable simple function on X, we define the integral of ¢ over E w.r.t. the

measure m to be:
/Eqbdmz/QSXEdm
We note that:
L [(p+9)dm= [pdm+ [Ydm
2. [ecpdm=c[Ppdm Yc>0

¢ = Z Ai X E;
Let {c} be the set of distinct values of {a; + b;}. Then
o+ = Z CkXGh

where Gy, = |J E; N Fj, the union taken over {3, j : a; + b; = ¢4}

To see 1. we put:

31



J(@+9) =3 cm(G)
= 2k Ok D jias+by—cy} U E N F})
= 2i(ai +bj)m(E; N Fy)
=Y aim(E; N F;) + > bym(E; N F)
= 2o am(E;) + 32, bym(F)

= [odm+ [¢dm

which proves 1.

A very useful property of the integral is:

Theorem 2.3.1. Fix a simple non-negative measurable function ¢ on X.
For each E € M put

ME) = / édm
E
Then X\ is a measure on M.

Proof. Let
¢ =a1xg + - GnXe,

for a; > 0. Then
AE = [, ddm
= f oxE dm
= [(aixEinE + -+ + A XE.nE) dM
=am(EyNE)+--- +a,m(E, N E)
=amg (E)+--- +ap,mg, (E)

therefore
A=amg, +---+a,mg,

is a linear combination of measures with non-negative coefficients. Therefore
A is a measure. O
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Corollary 2.3.2. 1. If E=J,2, E, is a countable disjoint union then
pdm = odm
2. If E=J;", E, is a countable increasing union then

n—oo

/¢dm— lim (;Sdm

3. If E =2, E, is a countable decreasing intersection and |, B opdm <

oo then
<b dm = lim ¢ dm

n—oo

We can now define the integral of any non-negative measurable function.

Definition Let f : X — [0, 00| be a measurable function. Then we define
the integral of f w.r.t. the measure m to be:

/fdm=s1;p/¢dm

where the sup is taken over all simple measurable functions ¢ such that:

0<o<f

Definition If E is a measurable subset of X then we define the integral of

f over E w.r.t. m to be:
/ fdm= /fXE dm
E
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We then have:
l. f<g = [fdm< [gdm

2. ECF = [,fdmn< [, fdm

2.4 Monotone Convergence Theorem
We can now prove our first important theorem on integration.

Theorem 2.4.1. (Monotone Convergence Theorem, MCT) Let {f,} be a
monotone increasing sequence of non-negative measurable functions. Then

/limfndm:lim/fndm

Proof. We write f, T f to denote that {f,} is an increasing sequence of
functions with lim f,, = f. We need to prove that:

lim/fndm:/fdm

fngfn—l—l Sf

for all n. Therefore:

[ wam< [ g < [ £

for all n. Therefore:
lim/fndmg/fdm
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2. Let ¢ be a simple measurable function s.t.:

0<o<f

A\

74 f
Let 0 < a < 1. For each integer n > 0 put

E, ={z € X : fu(z) 2 ad(z)}

so E, T X. Now:

/naqsdms Enfndms/fndm

Let n — oo:

a/qﬁdmglim/fndm

is true V0 < o < 1. Therefore:

/gbdmglim/fndm
/fdmglim/fndm
/fdmzlim/fndm
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Definition In probability theory we have a measure space:

X , M , P
sample events
space
with P(X) = 1. X is the sure event.
A measurable function:
f: X—R

is called a random wvariable.

P{z: f(x) € B}

is the probability that the random variable f takes value in the Borel set
BCR If

f = Q1 XE, + "'+anXEn

with ay,...,an; Eq, ..., E, disjoint, and £, U---U E,, = X, then the proba-
bility that f takes value a; is

and
/fdP: CL1P(E1) + +anP(En)

is the average value or the expectation of f.
We define the expectation of any random variable f to be:

B(f) - [ far

2.5 Existence of Monotone Increasing Simple
Functions converging to f

In order to apply the MCT effectively we need:

Theorem 2.5.1. Let f be a non-negative measurable function f : X —
[0,00]. Then there ezists a monotone increasing sequence ¢,, of simple mea-
surable functions converging to f

36



Proof. Put each integer n > 0:
L E<flr)<H! k=0,1,2,...,n2" -1

#nlz) :{ n o fl@)>n

; /
/1 D A

Then
L. 0 < ¢n(z) < Pnya(z)

2. each ¢, is simple and measurable

3. lim, 00 On(z) = f(2)
U

Theorem 2.5.2. Let f,g be non-negative measurable functions mapping X
to [0,00] and ¢ > 0. Then
1. [efdm=c [ fdm
2. [(f+g9)dm= [ fdm+ [gdm
Proof. Let ¢,,1, be monotonic increasing sequences of non-negative simple

functions with f = lim ¢,, g = lim,. Then
MET_ ¢ J fdm

MET Jim [ ¢ppdm = clim [ ¢, dm

1. fcfdm =
2. [(f+g)dm "S" lim [($, + ¢n) = lim [ ¢, dm + lim [ ¢, dm "

J fdm+ [ gdm
O

This enables us to deal with series:
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Theorem 2.5.3. Let f, be a sequence of non-negative measurable functions
X — [0,00|. Then:

J o man=3 [ fudm
n=1 n=1
Proof. put s, = fi +---+ f, sum to n terms. s, is monotone increasing:
. MCT .
a7 i [ o=t [3gem = S f
Therefore:

ﬂgmm:g/mm

Theorem 2.5.4. Let f : X — [0, 00] be a non-negative measurable and put

=/Efdm

for each E € M. Then X is a measure in M.
Proof. Let E =|J,-, Ex be a countable disjoint union. Then
= [, fdm

= [ fxedm

= [ fxe,) dm
YETSR [ fxm, dm
=21 J, fdm
= 2 km1 A(Ex)

therefore X is countably additive, as required. O

Corollary 2.5.5. 1. if E =|J,—, Ex countable disjoint union then
fdm = fdm

2. if B, T E then limkﬂoofEkfdmszfdm
3. If By | E and [, fdm < oo, then limkﬁoofEkfdm:fEfdm
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2.6 ’Almost Everywhere’

Definition Let f,g: X — [0,00]. Then we say that f = g almost every-
where (a.e.) or f(x) = g(x) almost allx € X (a.a.x)if {x € X : f(x) # g(x)}

has measure zero.

Theorem 2.6.1. Let f : X — [0, 00] be non-negative measurable. Then
[fdm=0% f=0 ae

Proof. Put E ={z € X : f(x) # 0}

1. Put 1
Enz{xEX:f(:c)>E

for each integer n > 0, so

1
[ > —xg,
n

3 |-

Suppose that [ fdm = 0. Then

0= /fdm > %m(En)

S0
m(E,) =0

for all n. But E, T FE, so
m(E) =limm(E,) = 1m0 =0

therefore
f=0a.e.

2. Suppose f =0 a.e., so m(E) = 0. Now,

0< f<limnyxg
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___________________________________

therefore
0 <[ fdm

< [limnygdm
Mo lim [ nxgdm
= limnm(E)

=1lim0=0
/fdm:()

Corollary 2.6.2. Let f : X — [0, 00] be non-negative and measurable and
let E have measure zero. Then

/Efdmzo

fxe=0ae.

/EfdmszxEdmzo

Corollary 2.6.3. Let f,g : X — [0,00| be non-negative and measurable
and f = g a.e. then [ fdm = [ gdm

SO

O

Proof.

therefore

O
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Proof. Let f = g on E and m(E") = 0 then

/fdm /fdm-l—/,fdm /gdm-l—/E’gdm /gdm

Thus changing f on a set of measure zero makes no difference to [ f dm.
Also

0

Theorem 2.6.4. If f,, are non-negative and f, T f a.e. then

lim/fndmz/fdm

Proof. suppose f, >0 and f, T f on E with m(E’) = 0. Then
[fdm = [, fdm+ [, fdm
M Yim [, o dm +0
= lim [f; fodm + [ fndm]

=lim [ f,dm

So far we have dealt with functions
X — [0, o0

which are non-negative, but have allowed the value cc.

Now we look at functions
X —R

which may be negative and we do not allow oo as a value.

Definition Let f: X — R be measurable. Put

ro={ 3@ 1=
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Thus f = f* — f~ and both f*, f~ are non-negative. We say that f is
integrable w.r.t. m if

/f+dm<oo and /f_dm<oo

/fdm /f+dm /f dm

and call it the integral of f (w.r.t. measure m)
If F is measurable we write

/Efdm=/fXEdm=/Ef+dm—/Ef‘dm

Theorem 2.6.5. Let f = fi — fo where f1, fo are non-negative and measur-
able and

and we write

/fldm<oo and /dem<oo
Then f is integrable and

/fdm:/fldm—/fgdm
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Proof. 1. f = f1 — f, therefore f* < f1; f~ < fo. So

/f+dm§/f1dm<oo; /f_dmﬁ/fzdm<oo

therefore f is integrable.
2. f=H—-fo=fr—f". 5o
h+f"=f"+F

[ iams [ 5dm= [ frame [ fodm
/fldm—/f2dm=/f+dm—/f_dm=/fdm

as required.

therefore

Theorem 2.6.6. Let f, g be integrable and f = g a.e. Then

/fdm:/gdm

ff=gtae = [ftdm=[g"dm

Proof.

=g ae. = [fdn=[g dn

S0
/fdm=/f+dm—/f‘dm=/g+dm—/g_dm=/gdm
]

So when integrating we can ignore sets of measure zero.
Theorem 2.6.7. Let f : X — R be measurable. Then

1. f is integrable < |f| is integrable

‘/fdm‘é/mdm
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Proof. 1.

[ integrable < [ ffdm < oo and [ f~dm < oo
S [(ff+f)dm < oo
< [|f|dm < oo

< | f| integrable

[ fdm| =[[f*dm— [ f~dm]
< [ftdm+ [ f~dm

= [|fdm

Definition A complex valued function f : X — C with

f(z) = fi(z) +ifa(z)

(say) (f1, fo real) is called integrable if f; and f; are integrable and we define:

/fdm:/fldm—i-i/fgdm

%/fdmz/(?)?f)dm
%/fdmz/(%f)dm

We have |f1| < |f|, |f2| < |f|, and therefore

|f| integrable < |fi]| and |fs| integrable < f; and f, integrable < f
integrable.

We also have:

f, g integrable and c € C = f + g and cf integrable, and

/(f—i—g)dm:/fdm—i—/gdm
/(cf)dm:c/fdm
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Thus, the set £(X,R,m) of all integrable real valued functions on X is
a real vector space, and the set £(X,C,m) of all integrable complex valued
functions on X is a complex vector space. And on each space:

f— / fdm
is a linear form.

If f: X — C is integrable then

/fdm:‘/fdm

e (say) 6 real

therefore (el
[ fdm| =e [ fdm
(rbeal)
=[e®fdm
— [ Rlef] dm
< [l dm
= [|fldm
therefore

‘/fdm‘S/mdm

2.7 Integral Notation

Definition When dealing with 1-dimensional Lebesgue measure we write

/[a,b]fdm:/abf(””)dxz—/baf(mdx

if @ <b. It follows that

/abf(a:)dx—i-/bcf(x)dx:/acf(x)da:

b
/ dr=b—a
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Ya,b,c.
Notice that = is a dummy symbol and that

/abf(x)d:zzzLbf(y)dyzﬂbf(t)dt:'_'

n n

Zaibizz:ajbj R

i=1 j=1

just as

2.8 Fundamental Theorem of Calculus

Theorem 2.8.1. Fundamental Theorem of Calculus Let f : R — R be
continuous and put

Ft) = / ) da

then
F'(t) = f(¢)
Proof. Let t € R, let € > 0. Then 36 > 0 s.t.

|ft+h)— f(O)] <e VIR <6
by continuity of f. Therefore

‘ F(t—|—h’2—F(t) — @) ‘

% th(a:)da:—%fﬁhf(t)da:‘

1

'

M)~ f@)ds

< ﬁe|h| =€

for all |h| < J;h # 0, and hence the result.

Corollary 2.8.2. If G : R — R is C' (i.e. has a continuous derivative)
then [ G'(z)dz = G(b) — G(a).

Proof. put F(t) = [! G'(z) dz. Then
F'(t) = G'(t)
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for all t. Therefore
Ft)=G(t)+c

for all ¢, where ¢ is constant. Therefore
b
mm—mwzp@—pwz/ﬂﬂ@m

as required.

Theorem 2.8.3. (Change of Variable)
Let
[ta,ta] 2 [t1,t2] > R

with f continuous and g € C'; g(t3) = t1,9(ts) = to. Then

[t = [ stanaway
Proof. Put t
G@:Lﬂ@m
then G'(t) = £(t), and therefore:
S Few)d W) dy = [ G'(g(y)g'(y) dy
= [ LG (g(y))] dy
= G(g(ts)) — G(g(ts))
= G(t2) — G(t1)
= J; fla)do
as required. O

To deal with sequences which are not monotone we need the concepts of
liminf and lim sup.

Definition Let
{an} = G1,02,03, - - -
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be a sequence in [—o0, c0]. Put
b, = inf{a,, ani1, anyo, - .}

Cp = Sup{ana An+1; Ant2, - - }

Then
by <bg- <bp, <bpy1 < <1 << <<
Define:
liminf a, = limb,
limsup a, = limc¢,
Then

liminf a, < limsupa,

and a,, converges iff lim inf a,, = lim sup a,,(= lim a,,).

2.9 Fatou’s Lemma

Theorem 2.9.1. (Fatou’s Lemma) Let f, be a sequence of non-negative

measurable functions:
fn X — [Oa OO]

Then
/ liminf f,, dm < liminf / fndm
Proof. Put
gr = inf{fra fr—f—l; .- }
so that
< gr < gr41 <
Now:

In > 9 Vn>r
= [ fa> [ g Vn >r
= liminf [ f, > [ g: Vr

MCT

= liminf [ f, > lim [ g, "= [limg, = [liminf f,

as required. O
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2.10 Dominated Convergence Theorem

Theorem 2.10.1. Lebesgue’s Dominated Convergence Theorem, DCT Let
fn be integrable and f, — f. Let

fal <9
for all n where g is integrable. Then f is integrable and [ f =lim [ f,

Proof. |f| = lim|f,| < g. Therefore |f| is integrable, and therefore f is
integrable. Now

g+ fn>0
therefore
/lim inf[g + f,] <rarov lim inf/[g + ful
SO
/[g:l:f] < /g—i—liminf:l:/fn
SO

i/fgliminfj:/fn

®: [ f<liminf [ f,

O: —ffﬁ—limsupffn

/fghminf/fnSIimsup/fnS/f

which is equivalent to:
i [ £~ [ f

as required. O

Which gives:

therefore

For series this leads to:

Theorem 2.10.2. Dominated convergence theorem for series Let f, be a
sequence of integrable functions such that

[l dm <
ZM" m < oo

Then Y > | fn is (equal a.e. to) an integrable function and
[ am=3" [ fuam
n=1 n=1
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Proof. Put
sn=hH+fat+fa

sum to n terms. Then
sul S A+ + 1l D ISl =19
r=1
(say). Then
Jgdm = [332,|f-|dm

= Z:il f | fr| dm < o0

Therefore g is integrable (a.e. equal to an integrable fn). Therefore lim s,, is

integrable and
/ lim s,, dm PET im / Sy dm
therefore

/2ﬁm:2/mm

as required. O

2.11 Differentiation under the integral sign
Another useful application.

Theorem 2.11.1. Differentiation under the integral sign Let f(x,t) be an
integrable function of v € X for each a <t < b and differentiable w.r.t t.

Suppose
of
_- <

for all a <t < b, where g is integrable. Then

%/ﬂmmmzfggﬁm

ﬂw:/ﬂxom
50
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Let a <t < b. Choose a sequence t, in [a, b] s.t. limt, =t and t,, # t. Then,
by the Mean Value Theorem:

‘f(.%’, tn) - f(x’t)‘ :‘tn - t‘ %—{(x,c(n,x,t))‘

S ‘tn - t|g($)
Therefore A ) )
z,t,) — [zt
— < g()
SO

F(tn)—F(1) — hmf f(ztn)—f(=,t) d

lim — i T

P [lim [et) S0 gy

= %(a:,t) dz

and therefore

as required. O
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Chapter 3

Multiple Integration

3.1 Product Measure

We have established the Lebesgue measure and Lebesgue integral on R. To
consider integration on
R?=R xR
we use the concept of a product measure.
We proceed as follows:

Definition Let [ be a measure on a g-algebra £ of subsets of X. Let m be

a measure on a o-algebra M of subsets of Y.
Call
{AxB:AeL,Be M}

the set of rectangles in X x Y

B AXxB
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Lemma 3.1.1. Let AxB = Uf; A; X B; be a rectangle written as a countable
disjoint union of rectangles. Then

Proof. We have

0
XAxB = § XA; xB;

= xa(2)xs(y) = Z X4 (%) x5, ()

Fix x and integrate w.r.t. m term by term using the Monotone Convergence

Theorem:
o0

Xa(z)m(B) = xa;(z)m(B;)

i=1

Now integrate w.r.t. x using MCT to get:

as required. O

Definition Let A be the collection of all finite unions of rectangles in X x Y.
Each element of A is a finite disjoint union of rectangles. For each F € A
such that

i=1

is a countable disjoint union of rectangles we define:

Theorem 3.1.2. 7 is well-defined and is a measure on A.

Proof. 1. well-defined
Suppose

i=1 j=1
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then .

j=1
Therefore, by Lemma 3.1.1
W(A)m(Bi) =) 1(A;i N Cj)m(Bi N D;)
j=1
and hence,
S W Agm(B;) =322, 3202 (AN Cy)m(B; N Dy)
=352 U(Cy)m(Dy)
Dj
Bi
A; C;

2. countably additive Let E = |J;2, E; be a countable disjoint union with
E,E; € A.
j=1

is a finite disjoint union (say). Then

E= EOJ 6 Aij X B'L'j
i=1;j=1
Therefore o -
n(E) =YY Ul(Ay)m(By) =Y _ w(E)
i=1 j=1 i=1

Therefore 7 is countably additive, as required.
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Definition The measure m on A extends to a measure (also denoted by 7
and called the product of the measures [ and m) on the o-algebra (denoted
L x M) of all subsets of X x Y which are measurable w.r.t. =.
Similarly, if
(Xy, My, mq),...,(Xn, My, my)

is a sequence of measure spaces then we have a product measure on a o-
algebra of subsets of
X1 XX X,

s.t.
T(By X« x By) = my(B)ma(E) . . .my(Ey)

In particular, starting with 1-dimensional Lebesgue measure on R we get
n-dimensional Lebesque Measure on

Rx-.-xR=R"

Example If we have two successive, independent events with independent
probability measures, P;, P,, then the probability of the first event £ and
the second event F’ is:

P(EXF) =P[(ExY)N(X x F)]
= P(ExY)P(X x F) by independence
— P(E)Py(F)

(i.e. product measure)

3.2 Monotone Class

Definition A non-empty collection M of subsets of X is called a monotone
class if

. E,1E,E,e M = E€M
2. E, | E\E, €M = E€M

i.e. M is closed under countable increasing unions and under countable
decreasing intersections.

We have: M is a og-algebra = M is a monotone class. Therefore, there
are more monotone classes than o-algebras.
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Definition If V is a non-empty collection of subsets of X and if M is the
intersection of all the monotone classes of subsets of X which contain V, then
M is a monotone class, called the monotone class generated by V.

M is the smallest monotone class containing ) and

YV C monotone class C o-algebra
generated by V generated by V

3.3 Ring of Subsets

Definition A non-empty collection R of subsets of X is called a ring of

subsets of X if:
FUFeR

EFeR =
ENF' eR

i.e. R is closed under finite unions and under relative complements.

Example The collection of all finite unions of rectangles contained in the
interior X of a fixed circle in R? is a ring of subsets of X.

Note:

1. if R is a ring then R is closed under finite intersections since £ N F =
En(ENF").

2. if R is a ring then ) € R since ENE' = )

3. if R is a ring of subsets of X and if X € R then R is an algebra of
subsets of X since E' = X N E', so R is closed under complements.

Theorem 3.3.1. (Monotone class lemma)

Let R be a ring of subsets of X and let M be the monotone class generated
by R.

Then M 1is a ring.

Proof. We have to show M is closed under finite unions and relative comple-
ments. i.e. that:
ENF', EUF, ENF €M

forall E, f € M. So for each E € M put
Mg={FeM:ENF EUF,E'NFeM}

and we must show
Mg=M

for all £ € M. Now
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1. Mg C M by definition
2. Mg is a monotone class, because:
F, 1 F F, € Mg
= (ENF))|(ENnF') (EUF,)1(EUF) (EENF,)1(E'NF)
with ENF,’ EUF, E'NF, alle M

= ENF EUF E'NF alle M
(Mi monotone)

= F e Mg

therefore My is closed under countable increasing unions, and similarly
M is closed under countable decreasing intersections.

3. F€eR

=> R C Mg since R is a ring. Therefore My = M by (i), (ii) since
M is smallest monotone class containing R.

4. F € Mg VE € R, F € M by (iii). Therefore E € Mp VYE € R, F €
M.

Therefore
RCc Mp VFeM

and therefore
Mp=M VF e M

as required.
O

Corollary 3.3.2. Let M be the monotone class generated by a ring R, and
let X € M.
Then M = G(R) the o-algebra generated by R.

Proof. M is aring and X € M
EeM = E'=E'NXeM

therefore M closed under compliments, and therefore M is an algebra.
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Also, if E,, is a sequence in M and E = |J;° E,, put
F,=FE U---UE, €M

then F, T E, and therefore £ € M.
Therefore, M is a o-algebra, hence the result. O

Corollary 3.3.3. Let M be the monotone class generated by an algebra A.
Then M = G(A) the o-algebra generated by A.

Proof. X € A = X € M, and hence the result by previous corollary. [

3.4 Integration using Product Measure

Let [ be a measure on a o-algebra L of subsets of X.
Let m be a measure on a og-algebra M of subsets of Y.
Let A be the algebra of finite unions of rectangles Ax B; A € L, B € M.

Let m be the product measure on the o-algebra G(.A).
It

f:X —1[0,00]
g:Y — [0, ]
F:XxY — [0, 00]
are non-negative measurable, write:
[fdl= [ f(z)dz
Jfdm= [, g(y)dy
JFdr= [, F(z,y)dzdy
If EC X XY write
E,={yeY:(x,y) € E}

EVv={x € X :(z,y) € E}
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Theorem 3.4.1. if E € G(A) and l,m are o-finite then:

w(B) = [ mE)do= [ 1) dy

Proof. To show

(E) = /X m(E,) dz (3.1)

1. Suppose I, m are finite measures: [(X) < oo, m(Y) < oo. Let N be
the collection of all £ € G(A) s.t. Equation (3.1) holds. We will show
that NV is a monotone class containing A:

ACN CG(A

and hence N = G(A) since by the corollary to the monotone class
lemma, G(.A) is the monotone class generated by .A.

(a) A€ N.
If F= A x B is a rectangle then

m(Ez) = xa(x)m(B)
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then
/X m(E,) dz = I(A)m(B) = = (E)

therefore £ € N. Now each element of A can be written as a
finite disjoint union of rectangles, therefore

ACN
(b) Let E, T E,E, € N. So,

(En)e T Ex

for each z € X.
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Then
Jxm(Ey)dx = [, limm((E,),) dz

"EMim [, m((En).) dz
= limn(E,)
=n(E)
therefore £ € N, and N is closed under converging unions.

(c) Let E € N. Then
Sxm(E)z)dz = [ [m(Y) — m(E;)] dx
= I(X)m(Y) — m(E)z
= 1(X xY) - n(E)
= n(E").

Therefore E' € N, and N is closed under complements. Therefore
N is a monotone class, and therefore N = G(A).

2. Suppose [, m are o-finite,
A, TX, B,1Y

(say) with
l(A,) < oo, m(B,) < o0

Then
Zn T (X XY)

where Z,, = A,, x B, and 7(Z,,) < oc.
Let E € G(A). Then (EN Z,) 1 E, and

(ENZ,). T E;
for all z € X.
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So:
Jxm(Ey)dz = [, limm((ENZ,),)dx

Y im [, m((E N Z,,),) da
(since Z, has finite measure)
=lim7(ENZ,)

= n(E)

as required.

3.5 Tonelli’s Theorem

Theorem 3.5.1. (Repeated integral of a non-negative funtcion)
Let F: X xY — [0, 00| be non-negative measurable. Then

/X [/YF(:v,y)dy] d:cz/XxyF(x,y)dxdyz/Y [/XF(x,y)dx] dy

(notation as before.)
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Proof. To show

/X [/Y Fla,y) dy] dx:/XXy F(z,y) dzdy (3.2)

1. Equation 3.2 holds for F' = x g, since

[ | xstenas] do= [ minyde=nte) = [ utodody

therefore Equation 3.2 also holds for any simple function.

2. (General Case)

4 monotone increasing sequence of non-negative measurable functions

with /' = lim F;,
fX UY x, dy] de = fX Uylian(x,y)dy} dx
YT [ flim [ Fu(z,y) dy] de
ST dim [y [fy Fa(ey) dy] da

= lim [, Fu(z,y)dedy
wor

Jx oy im Fy (z,y) da dy

= Jxxy Fla,y)dedy

3.6 Fubini’s Theorem

Theorem 3.6.1. (Repeated Integral of an integrable function)
Let F' be an integrable function on X x Y. Then:

/X [Lp(x,y)dy] da::/XxyF(a:,y)da:dy:/Y [/XF(az,y)da:} dy

Where [, F(z,y) dy is equal to an integrable function of z a.e., and [, F(z,y)dz
s equal to an integrable function of y a.e.
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Proof.

fXXY r,y)dedy = fXXY (z,v) dz dy — fXXy ~(z,y) dx dy

rett [y Fr(z,y) dy] do = [y [fy F(z,y) dy] do

Therefore fY Ft(z,y)dy, and fY (z,y) dy are each finite a.a.z., and each
has a finite integral w.r.t. x. (*)
So:
F(x,y) = F+($ay) - F_('Tay)

is integrable w.r.t y a.e., and:

/YF(x,y)dy=/YF+(ﬂc,y)dy—/F_(w,y)dy

Y

for a.a.x, and is an integrable function of x (by (*)), with:

Ix Uy F(zy)dyl de = [ [fy F*(z,y)dy] do— [ [[y F(2,y)dy] dz

fXXy F(z,y)dxdy

Theorem 3.6.2. Let f be an integrable function R — R. Then
1. [ fx+c)dzx= ff(a:)dx
2ffcmdaz—c|ff z (c#0)

Proof. These are true for f = yg, because:

1.

/XE(QC +c¢)dr = /XE_C(QC) dr =m(E —c) =m(E) = /XE(:U) dx

[ xeten)dz = [xsp(a)de =m(2E) = () = = [ xo(e) de

Therefore, these are true for f simple, and therefore true for f non-negative
measurable (by MCT), since 3f,, simple, s.t. f, T f. Therefore, these are
true for f = f* — f~ integrable. O
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We now see how to deal with integration on change of variable on R".

Recall [ f(cx)dx = ﬁff(:c) dr.

Theorem 3.6.3. (Linear change of variable)

Let R* 25 R™ be an invertable matrix, then

/f(Aac) dz — |deltA‘ /f(x) de

Proof. we can reduce A to the unit matrix I by a sequence of elementary
row operations.

1. To replace row i by row 7 4+ ¢ row j, multiply A by:

(1

\ )

with ¢ in the i,j position.

2. To interchange row ¢ and row j, multiply A by:

(1 : \
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3. To replace row 7 by ¢ row j, multiply A by:

('

\ 1)

Therefore, there exists matrices By, ..., B, each of type N, P or D s.t.
BBy---B,A=1

and therefore,
A=B.'---B,'B/!

is a product of matrices of type N, P or D.
Now, if the theorem holds for matrices A, B then it also holds for AB
since:

1 1 1
/f(ABx)dxzm/f(Ax)dx: |detB||detA|/f(x)dx:m/f(x)dx

therefore, it is sufficient to prove it for matrices of type N, P, D.

1. Let

—
o O =
SO~ O
_ o O
e

\ 1)
(say). det N = 1. Then
[ f(Nz)dz = [ f(z1+ cxa,2o,...,2,) d21ds -~ day

— ff(x]_,xQ,’xn)dxldx2-..dxn
(by Fubini, and translation invariance)

= mff(:r)da:
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2. Let

—
O~ O
o O =

(say). det P = —1. Then
[ f(Pz)dz = [ f(zo,21,...,2,)d21d2s - dzy,

= ff(l'l,l'g,...,.’lj‘n)dxldgj2...dxn
(by Fubini)

= gy ) fl@)de

3. Let

—
SO0
o~ O
o O
oo
—

\ )

(say). det N = ¢. Then

ff(Dac)da: - ff(cmlaﬂfz,...,a:n)dxldgyz...dxn
- ﬁff(xl,ﬂfz,...,xn)dgzldxz,...dxn
(by Fubini)

= qp [ f@)de

O

Corollary 3.6.4. if E C R" is measurable and R" A, R* is a linear homo-
morphism then

m(A(E)) = | det Ajm(E)
Proof.
m(E) = [xg(z)dz
[ xae) (AX) dx
- |de—1tA|fXA(E)(33) dx
= Team(A(E))
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as required.
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Chapter 4

Differentiation

4.1 Differentiation

IfR AN R is a real valued function od a real variable then the derivative of
f at a is defined to be:

f(a) = 1im {2TP = (@) (4.1)

h—0 h

We want to define the derivative f'(a) when f is a vector-valued function of
a vector variable:
f:M— N
where m, N are real (or complex) vector spaces.
We cannot use Equation (4.1) directly since we don’t know how to divide
f(a+ h) — f(a), which is a vector in N, by h, which is a vector in M
So, we rewrite Equation (4.1) as:

fla+h)= @ + flla)h + ¢(h)

— N~
(constant)  (linear in h)  (remainder)
e o) _ flat )~ f(o
. _Jla+h)—jla)
A = : Ja)

This suggests that we take M, N to be normed spaces and define f'(a) to
be a linear operator such that

fla+h) = f(a) + f'(a)h + &(h)

where

oA

li
Irl[—0 |||

=0
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at+h at+h
¢ oh)
h f(@h

A ‘) f(a+h)

This f'(a)h is the linear approx to the change in f when variable changes by
h from a to a + h.

4.2 Normed Space

Definition let M be a real or complex vector space. Then M is called a
normed space if a function ||.|| exists,:

M—R

z — ||z

is given on M (called the norm on M), such that:

Ll >0

2. ||lz|| =0 2=0

3. |laz|| = |af ||z|| V scalar «

4. ||z +y| < |lz|| + |ly|| (triangle inequality)

Example 1. R" with |[(aq,...,an)|| = Va2 + -+ a2 is called the Eu-
clidean Norm on R".

2. C* with ||(a1,...,an)|| = V/]a12+ -+ |a,|? is called the Hilbert
Norm on C".

3. C* with |[(a1,...,q,)|| = max{|a],...,|an|} is called the sup norm
on C".

4. if (X, M, m) is a measure space the the set of integrable functions

£'(X,R,m) with
1l = / |fldm

is called the £'-norm (functions are to be regarded as equal if they are
equal a.e.)
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4.3 Metric Space
Definition a set X is called a metric space if a function
D:XxX—R

is given (called a metric on X) such that

1. d(z,y) >0

2. d(z,y) =0 =y

3. d(z,z) < d(x,y) + d(y, z). This is known as the triangle inequality
Definition If ¢ € X and r > 0 the we write

Bx(a,r)={z € X : d(a,x) <1}

and call it the ball in X centre a, radius r.

Example if M is a normed space then M is also a metric space with

d(z,y) = ||z — y||

4.4 Topological space

Definition a set X is called a topological space id a collection V of subsets

of X is given (called the topology on X) such that:
1. § and X belong to V

2. if {Vi}ier is any family of elements of V then |, v; belongs to V. i.e.

V is closed under unions

3. if U and V belong to V then U NV belongs to V. i.e. V is closed under

finite intersections.

We call the elements of V the open sets of the topological space X, or open

in X.

Example Let X be a metric space. Then X is a topological space where we

define a set V to be open in V if V C X and each a € Vdr > 0 s.t.

Bx(a,r) CV

73



Theorem 4.4.1. if X is a metric space then each c € X and s > 0 the ball
Bx(c, s) is open in X.

Proof. Let a € Bx(c,s). Put r = s —d(a,c) > 0.

Then

x € Bx(a,r)
= d(z,a) <r=s—d(a,c)
= d(z,a) +d(a,c) <s
= d(z,¢) <s

= 1z € Bx(c,s)
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and, therefore BX(a,r) C Bx(c, s), as required. O

4.5 Continuous map of topological spaces
Definition a map f: X — Y of topological spaces is called continuous if:

VopeninY = f 'V open in X

Theorem 4.5.1. let X,Y be metric spaces, then:
f: X—Y
s continuous if and only if,

foreacha e X, e >0
36 >0 s.t. (4.2)
d(z,a) <6 = d(f(x), f(a)) <€

- /Bx(a,8) € By(f(a),e)

Proof. 1. Let f be continuous. Let a € X, ¢ > 0. Then By(f(a),¢) is
open in Y. Therefore, f'By(f(a),¢) is open in X.

I0)



36 > 0 s.t.

Bx(a,8) C f~'By(f(a),€)

and

fBx(a,0) C By(f(a),¢)
therefore Equation (4.2) holds.

. Let Equation (4.2) hold. Let V be open in Y, a € f~'V, and so
fla) € V.

Now, de > 0 s.t.
BY(f(a)’ 6) - V

\Y,

and 36 > 0 s.t.
[Bx(a,6) C By(f(a),e) CV

therefore,
Bx(a,(S) C f_lV

so, f 'V is open in X, and f is continuous.
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4.6 Homeomorphisms

Definition amap f: X — Y of topolgical spaces is called homeomorphism
if:

1. f is bijective
2. fand f~! are continuous

Definition X is homeomorphic to Y (topologically equivalent) if 3 a home-
omorphism X — Y. i.e. J a beijective map under which the open sets of
X correspond to the open sets of Y.

Definition a property P of a topological space is called a topological prop-
erty if X has property P and X homeomorphic to Y = Y has property
P.

Example ’‘compactness’ is a topolgical property
Note: we have a category with topological spaces as objects, and con-

tinuous maps as morphisms.

4.7 Operator Norm

Definition Let M, N be finite dimensional normed spaces. Then we can

make the vector space
L(M,N)

of all linear operators 7': M — N, into a normed space by defining;:

T
17 = sup 172
cer |12
z#0

|T|| is called the operator norm of T.

We have:

1. Ifx;éOandyzﬁthen

1
Iyl = 7—llzll =1
]

7



E

B

i.e. y has unit norm. Therefore

1Tz _ HTi
[eal

]

\ e
and

|| = sup [Tyl
eEM

Y
llyll=1

17l

2. if «v is a scalar then

[oT|| = sup [[aTy|| = |af sup | Ty] = |of|[T]]
lyll=1 lyll=1

3.1 S, T : M — N then

1S+T1 = Sup I(S+T)yll < ||81”1131(||Sy||+||Ty||) < sup |[Syll+sup [ Ty|| = IS+ T
Yli= Yli=
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1Tl =0

[

T —

(by 2,3,4 the operator norm is a norm).
Theorem 4.7.1. 1. if T: M — N and z € M then

[Tz || < [|T]] |||
2. If L = M 25 N then
ST < [ISIHIT]
Proof. 1.
[T
= < |7
]
Vz # 0, be definition. therefore,
[T ]| < [|7]] |||
for all x
ST = SUP||y||=1 STyl
< sup S| [Tyl (by 1.)
< supy = STyl (by 1.)
= [ISIHIT
U
Note:

1. if M is finite dimensional then every choice of norm on M defines the
same topology on M

2. a sequence z, of points in a topological space X is said to converge to
a € M if, for each open set V' containing a AN s.t. z, € VVr > N.

For a normed space M this is the same as: for each ¢ > 0dN s.t.
|z, —al| < eVr > N.
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4.8 Differentiation

Definition let
MoV LN

where M, N are normed spaces and V is open in M. Let a € V. THen f is
differentiable at a if 9 a linear operator

JYRACEY,
such that
fla+h) = f(al) + f'(a)h + ¢(h)
where low)|
— —0 hl|l — 0
A as ||h]

Theorem 4.8.1. if f is differentiable at a the the operator f'(a) is uniquely
determined by:

f’(a)h = lim, f(a—}—tli)—f(a)
= directional derivative of f at a along h

= %f(a + th)‘t:O

a+h

a+th
a

f'(a) is called the derivative of f at a

Proof.
fla+th) = f(a) + f'(a)th+ 6(th)

therefore,

I
2]

Hf(aﬂi;)—f(a)

_ H ¢(th) H _ llo(th)
t

— (a)h
fa) H fit]

tends to 0 as t — 0.
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f(a+th)
a+th f

Example 1. f:R— R f(z) =2 Then

_ 3_ 3 2 2 13
fla+h)=(a+h)’=_a" +3a°h+3ah” +h
fla)  f(a)h o(h)

so f'(a) = 3a’.
2. f:RY" — R f(X) = X3

f(A+H) = (A+H)?

— 3 2 2
= A+ AH+ AHA+HA?
54) 7y H

+AH?+ HAH + H’A+ H®
o(H)

taking (say) Euclidean norm on R™ and operator norm on R =

L(R™ R™).
lg(H)ll  _  ||[AH?+HAH+H?A+H?||
1Al TH]|

3llA|l||H]|*
< SlALILA]"
- I1H]|

= 3| A|l|H|| —0
as ||H|| — 0

therefore, f is differentiable at A, and
fI(A) . Rnxn N Rnxn

is given by

f'(A)H = A’H + AHA + HA?
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Theorem 4.8.2. Let R* 5V —5 R™ be g differentiable function with

F= (™) = ()
- (55)

f'(a) : R* — R™

Then

Proof. For each a € V' we have

is a linear operator. Therefore, f'(a) is an m x n matrix whose ;™ column is

flla)e; = lim,_,o Lot J@
a5 (a)

- (%@, %5 W)

therefore, _
’ of
r = ()

. (oF
f‘(%J

which is the Jacobian matriz. O

for all @ € V. Therefore,

Theorem 4.8.3. Let M DV S, Ny X « -+ x Ny where

f@) = (fl(@),..., fH(z))

Then f',..., f* differentiable at a € V. == f is differentiable at a, and
@)= (M@, /¥ (@)h).

Proof. (k = 2)
M-V LN x N,

f(z) = (fH(2), f*(2))
Take any norms on M, Ny, Ny and define a norm on Ny X Ny by

10 w2) | = [yl + [l
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Then
fla+h) = (f'(a+h), f*(a+h))

= (f{(@) + [ (@h+ 6 (), f2(a) + f(a)h + $*(R)
= (/Y(@), (@) + (/' (@h, [ (@)h) + (6 (1), (1))
~—_——

- v
-~

linear in h

remainder

Now:
(¢ (h), $*() || _ I6" (A n 18>l
Il [ [

tends to 0 as h — 0. Therefore, f is differentiable at am and

f@h = (1"(@h, f*(a)h)

as required. O

4.9 Notation
1. Given a function of n variables
ROV LR

V open, we shall denote by

the usual co-ordinate functions on R™ and shall often denote the partial
derivative of f at a w.r.t. §® variable by:

fla1,a2,...,a;+1,...,an)— f(a1,a2,...,G5,...,an)
t

a—f(a) = limt_m
= % (a+tej)|t:0

Notice that the symbol 27 does not appear in the definition: it is a
*dummy symbol’ indicating deriv w.r.t. j' ’slot’, sometimes written as

fi5(a)-

2. given a function
R >V -LR

33



V open, we often denote by z, y the usual co-ordinate functions instead
of z!, 2? and write

(9f for ﬁ
oz Oxt
8f ﬁ
3y 8:162
etc.
3. given
MoV -L N

V open, if f is differentiable at a, Va € V, we say that f is differentiable
on V and call the function on V:

f'i0— 1)
the derivative of f. We write:
5O = (1
59 = (Y

and call f C" if f(") exists and is continuous, f C™ if f() exists Vr.

4.10 (" Functions

Theorem 4.10.1. Let
R">V LR

V open. Then f is C! < gji exists and is continuous fori=1,...,n.

Proof. (case n = 2)
ROV-SR f(zy)

. if fis C, then 2L 9L exist and

oz’ Oy
, _(Of Of
f‘(%a—y)

therefore, f’ is continuous, and therefore, gf and are continuous
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2. Let %, g—i exists and be continuous on V. Then

_ Of ( vp1 ., OF \o
fla+h) = f(a)+ 5= (a)h +a—y(a)h + ¢(h)

(say) where h = (h', h?). Now

o(h) = fla+h)— fla+h2e) — Z(a)h!

x

+f(a+ h?e) — f(a) — & (a)h?

= Zmor' — Lp!
5L (ma) 2 — 2 (a)1?

(say) by mean value theorem.

1 I—

+ h?
L P a+h
my
a
Therefore,
h 0 0 h! 0 0 h?
WO 081 28 ) |0 NI

il T |y ™)~ 5y @y

as h — 0 since %, g—i are continuous at a.

Therefore, f is differentiable at a and f'(a) = (%(a), %(a)). Also,

= (9L 9) is continuous.
oxr’ Oy
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Corollary 4.10.2. f is C" <= 2L egists and is continuous for each

Ozl ...0ir
Uyeeeylp.

Theorem 4.10.3. if
RS>V -LR V' open

. 2 . . .
is C? then 2L is a symmetric matriz.

Ozt Oxi
Proof. Let
R >V LR
be C?. Need to show:
o f B Pf
oxdy  Oyox
V
b+h
b —_*4
| | |
a X at+h

Let (a,b) € V. Let h # 0, k # 0 be such that the closed rectangle
(a,b), (a+h,b), (a+h,b+k), (a,b+ k)
is contained in V. Put
9(x) = f(z,b+ k) — f(z,0)
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Then

fla+h,b+k)— f(a+ h,b)
—fla,b+ k) + fla,b) = g(a+h)—g(a)

= hg'(c) some a < c¢<a+hby MVT
= h[%(c,b-l—k)—%(c,b)]
= hkZL(c,d) someb<d<b+kby MVT

and, similarly:

Fla+hb+k) — fla+h,b)
—fla,b+k) + f(a,b) = khZL(c,di")

forsome a < <a+h and b < d < b+ k. Therefore

o f o f
OyOx (c,d) = 0xdy

(¢, d)

Now, let (h,k) — (0,0). Then (¢,d) — (a,b), and (¢',d') — (a,b).
Therefore,

*f *f
b) = b
by continuity of afgx and ;;gy O

4.11 Chain Rule

Theorem 4.11.1. (Chain Rule for functions on finite dimensional real or
complex vector spaces)

Let L, M, N be finite dimensional real or complex vector spaces. Let U be
open in L, V open in M and let

v v -LN

Let g be differentiable at a € U, f be differentiable at g(a). Then the compo-
sition f - g is differentiable at a and

(f-9)(a) = f'(g(a)) g'(a) operator product
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Proof. we have

flglan)] = flg(a) +Th+ ¢(h)] where T = g'(a)

= flg(a) + ] where y = Th + ¢(h)

so [[yll < IT[HIPN + [[o(h)] — 0

as ||h|| — 0

= fl(g(a))+ Sy + llyllv(y) where S = f'(g(a))
and || (h)|| — 0

as [jy[| — 0

= f(g(a) + S(Th+ ¢(h) + ||yllv(y)

= [f(g(a)) + STh+ S¢(h) + [lyllv(y)
Now

IS0 + Iyl _ | o 1) 0]
PO < gy BN (4 100 o

tends to 0 as ||h|| — 0. Therefore, f - g is differentiable at a, and
(f - 9)'(a) = ST = f'(9(a)) g'(a)

Example
SHG W), g"(0) = (F -9V (1) = £la(0) g 1)
——
where

RoU-LV-LR
V open in R", and f, g differentiable. Then

2g'(t)
fla®g®) = (Z&g(t),... 2 (9(1) :

is the usual chain rule.
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Chapter 5

Calculus of Complex Numbers

5.1 Complex Differentiation

Definition let
cov-Lc

be a complex valued function of a complex variable defined on open V. C is
a 1-dimensional complex normed space.

Let a € V. Then f is differentiable at a as a function of a complex
variable if 9 a linear map of complex spaces:

c™c¢

s.t.
fla+h) = f(a) + f(a)h + ¢(h)

where % — 0ash — 0. f'(a) isa 1 x 1 complex matrix, i.e. a complex

number, and

0]

fla+h)—f(a)
h

which tends to 0 as h — 0. Therefore
f'(a) — lim f(a’ + h) - f(a’)

h—0 h

We call f'(a) the derivative of f at a. f'is called holomorphic on V if
f'(a) exists Va € V. We write f = 3—{/.

Example
f:C—C, flz)=2"
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then,

(z+h)™—2"

f(z+h’z—f(z) = limy, )y

limy, 9
= limy_,o[nz"! + @z””h + higher powers h|
= nz"!

therefore, f is holomorphic in C and f'(z) = nz""'.

Example

then,

flz+h)—f(z) h_[1 hreal
h ~ h | =1 h pure imaginary

which does not converge as h — 0.
The usual rules for differentiation apply:
L a(f+9 =5+
2. wfo=rfg+a9d

df dg
g@*f@

7 ifg#0

4. d% (9(2)) = f'(9(2)) ¢'(2) chain rule
By definition C = R?

3.

I —
9

S

z=z+1iy = (z,y)
and the operation of mult by i = /—1 C - C is the operator R? —— R?
with matrix ( g _0 ), because
ie; =1i=(0,1) = 0e; + ey

2'62 =u=—-1= —e; + 062 = (—1,0)
Let f is (real) differentiable on V then each a € v the operator

C f'(a) ie R2 (@) 2

— C — R
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preserves addition and commutes with mult by real scalars, for each a € V,
and f is holomorphic in V iff f'(a) also commutes with multiplication by
complex scalars. <= f'(a) also commutes with multiplication by i.

du  Ou ou  du
~(EDED-CDEDY
oz By oz By

oy oz oz oy
u _ dv
ox ~— Oy
= Cauchy-Riemann Equations
v _ _ou
éx ~ Oy

o, therefore: f = u + v is holomorphic in V' <= f is real-differentiable
on V and satisfies the Cauchy-Riemann Equations.

Example f(z) = 2% = (z +iy)? = 2% — y? + 2izy. then

— 2 2 Ou __ _ dv
Note, if f = u + v is holomorphic in V' then
L(a) = limy LI
= limy_ Het=S@) _ iy, Hedi=f(@)

= Zu+iv] = %(%[u—#iv]

therefore,

g_au ,(%_8_1)_@.@

8z_8a:+2%_8y oy

this also gives the Cauchy-Riemann Equations.

5.2 Path Integrals

Definition C! map
[t1,ts] =V C R? V open

t — aft)
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is called a (parametrical) path in R fom a(t1) to a(ty) and if f, g are complex-
valued continuous on V we write

[ da gy = [1fa®) Zaat) + sla®) Fulal)) i

t1
and call it the integral of the differential form f dx + g dy over the path a. If
[817 82] L) [tla t?]

is C' with o(s;) = t1, 0(s3) = t, and (3(s) = a(o(s)) then S is called a
reparameterisation of a.

We have
[s(fdz+gdy) = [7[f(B(s)ga(B(s)) + g(B(s)) y(B(s))] ds

21f(at) La(at) + glat) Ly(alt))] dt

= [ (fdz+gdy)

therefore, the integral over « is independent of parmaterisation.
If we take
[t1, t2] = [t1, to]

with o(s) = t; +t; — s, and ((s) = a(o(s)) we have o(ty) = t1, o(t1) = to
then 3 is same path but traversed in the opposite direction and

[s(fdz+gdy) = til[f(a(t))%m(a(t))+9(a(t))%y(a(t))]d5
= — [ (fdz+gdy)

Definition If f is C' on V we write

0 0
df = a—idm + 8—5@

A differential form of this type is called ezact, and is called the differential
of f.
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If o is a path from a to b, a(t;) = a, a(ts) = b, then
S df = [l (@)ge(at) + g(at) gylalt)] dt
oL f(al)] di
= flolt) — fla(t))
— f(b)—f(a)  so we have path independence

= change of value of f along «

If v is a closed path, (i.e. a = b) then

[ dr=o

If f(2) =u(x,y) + w(zx,y), for z =z + iy with u,v real, put dz = dz + idy
and
f(2)dz = [u+iv][dx + idy]
= (udzx —vdy)+i(vdr +udy)
then

[, f(2)dz = [ (udz—vdy)+i[ (vdz+udy)
= 2 {[u(a(®)) + iv(a(t)] & lz(a(t)) + iy(a(t))]} dt

o fla(t) (1) dt
If f is holomorphic then
df = du+idv= %dx+g—1;dy+ig—gdx+ig—zdy
= dgp — Pdz +i Gidr + i Stdy
= (& +i2)(dx+idy)
= f(2)dz

therefore, if f is holomorphic on V open then

1. for any path a in V from a to b:

/ f'(z)dz = f(b) - f(a)

path independence
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2. for any closed path v in V:

/a F(2)dz =0

Example 1. if a path from a to b

d zn—|—1 bn—|—1 _ an—|—1
"de= [ [— = 1
/az dz /a[dzn—i—l]dz n+1 n7

in particular,

2. if a is a closed path,

/z”d,z=0 n#1
But:

3. for the closed path a(t) =€, 0 <t < 27

d 27 1 2
/_Z:/ —,tze”dt:/ idt = 2mi £ 0
a % 0o € 0

therefore, % cannot be the derivative of a holomorphic function on C.

Definition if [t;, ;] — C is a path in C then we write

L= | o) dt

and call it the length of «.
If B = «- 0o is a reparameterisation of o with o/(s) > 0

L) = [18'(s)] ds
= [ 1e'(0(s))o’(s)] ds
Ji e/ (@) dt

= L(a)
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Theorem 5.2.1. (Estimating a complex integral)
Let f be bounded on a:

[fla@)] <M
(say), t1 <t < ty. then
/ F(2)dz| < MIL(a)
Proof.
[ f(2)dz| = | [ fla()o'(t) dt
< 21 a®)] /(1) dt

IN

M [ |/ (t)] dt

= ML(a)

5.3 Cauchy’s Theorem for a triangle

If f(z) =u(z,y) + iv(z,y) is holomorphic then

/af(z)dz:/a(udx—vdy)-l—i/(vdx—l—udy)

and (%u = 2 (—v), a%“ = 2u (by Cauchy-Riemann).
Therefore, the neccessary conditions for path-independence are satisfied,

but not always sufficient, e.g.f(z) = % However, we have

Theorem 5.3.1. (Cauchy’s Theorem for a triangle)

Let C >V L C e holomorphic on open V', and let T be a triangle
(interior plus boundary 6T ) C V. Then

f(z)dz=0

oT

Proof. write



and join the mid-points of the sides to get 4 triangles
Sl) SQ, S3a S4

then

and therefore

(say) where T3 is one of Sy, ..., S4.

Repeat the process to get a sequence of triangles
T,T,,...,T,, ...

with
1i(T)| < 4™i(T,)|

Let (;2, Tj = {c}. Then
i(T,) = [or, f(2)dz
= f(STn fl(e)(z—c)+ |z —clp(z — ¢)] dz

= [ lz2—cl¢(z—c)dz  where [¢(z — )| — O as [z —¢[ — 0
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Let € > 0. Choose 6 > 0 s.t. |p(z —c¢)| < eV|z—c| < 0. Let L =length of T.
Choose n s.t. length of T, = &£ < 6.
Then
) I?

l
|Z( n)| — 2n62n 4716

therefore |i(T)| < [%¢, and therefore i(T) = 0. O

Definition A set V C C is called star-shaped if da € V s.t.

a,z] CV  VzeV

Theorem 5.3.2. Let C DOV J.Ctea holomorphic function on an open
star-shaped set. Then f = F' for some complex-differentable function ' on

V and hence:
/ f(z)dz=0

for each closed curve o in V.
Proof. Choose a € V s.t. [a,2] CVVze V. Put F(w) = [ f(z)dz. Then
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Fw+h) = ["*" f(2)dz

a

= faw f(z)dz + ful,UM f(z)dz by Cauchy

w—+h

_ Fw)+ fw)h+ /

Jw

[£(2) = fw)] dy
o(h)
Let € > 0. Choose 6 > 0 w.t. |f(z) — f(w)| < e V|z—w| <. Therefore

|6(h)| < [hle
for all |h| < §, and therefore

. e(h)|
hlino |h| =0

Therefore, F' is differentiable at w and F'(w) = f(w) as required.

5.4 Winding Number

We have seen that

dz
/ — =271
circle about 0 <

More generally:
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Theorem 5.4.1. Let a € C ad « : [t1,ts] — C—{a} be a closed path. The

1 dz
2t J,z—a

is an integer, called the winding number of o about a

Proof. put

so ('(t) = O‘I)(t) . Then

a(t)—a
4 [[o(t) —ale?0] = [a/(t) — F(1){alt) — a}] 20
= 0

therefore, [a(t) —a]e™?® is a constant function of ¢ and is equal to [« (¢;) —al,
since ((t1) = 0. Therefore

&5

therefore,
e,B(tQ) — Oé(tg) —a -1
alty) —a

and therefore, 5(to) = 2nmi, with n an integer.

2nme

(A

99



Therefore,

dz [ d(s) B B ,
/aZ—Cb_/tl mds-ﬁ(h)-?nm

as required. O
Theorem 5.4.2. Let C be a circle and a € C. Then

1. if a s inside C, then C' has winding number 1 about a:

/ dz )
= 2m
cZ—a

2. if a 1s outside C' then winding number about a is 0.

d
fmam
cZ—a

Proof. 1. Let a be inside C, let C; be a circle, centre a inside C. Let
a, 3,7 be the closed paths shown, each is contained in an open star
shaped set on which —L- is holomorphic.
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dz dz dz dz dz
a z—a + fﬁ z—a + vy z—a C z—a fCl z—a

0 0 = 0 = ey

d d 2n ;. 10
/ z—za:/ z—za:/ Z::w d0 = 2mi
C Ch 0

(put z = a + re¥).

therefore,

2. Let a be outside C', then C is contained in an open star-shaped set on
which Zi—a is holomorphic. Therefore,

d
f=5-
crR—a

5.5 Cauchy’s Integral Formula

Theorem 5.5.1. (Cauchy’s Integral Formula)
Let f be holomorphic on open V in C. Let w € V.. Then, for any circle
C around w, such that C and it’s interior is contained in V, we have:

1 fR)

21t Jo 2z —w

f(w) dz

(Thus the values of f on any circle uniquely determine the values of f inside
the circle)
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Proof. Let € > 0. Choose a circle C; centre w, radius r (say) inside C' such
that [f(z) — f(w)] <e  Vz e C) by continuity of f.

C

Let «a, 3,7 be as indicated. Then, by integrating i’?}
/_/ =/+/+/=0+0+0=0
C C1 o B Y
since each of «, 3,7 are contained in a star-shaped set on which % is a
holomorphic function of z. Therefore,
Jo ﬁzu); dz = fcl fi); dz
= Jo %d’z—i_fCl e d
= 2mi f(w)+0
because:
M dz| < 527”« — e
o, Z—w r
for all € > 0. Hence result. O
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Let C > V -1 C be holomorphic on V open. Let w € V. Pick a circle
C around w such that C and it’s interior D V. We have:

fwy =2 [ L8y,

2t Joz—w

differentiating w.r.t. w under the integral sign:

f@:%é&%wz

Justified since 3 r > 0 s.t.

f(2)

(z —wy)?

_ 1)

=~ 7'2

for all wy; on an open set containing w,, which is integrable w.r.t. z.
Repeating n times gives:

f(w) = ! /C(&dz (5.1)

T 2mi z —w)"t!

Thus, f holomorphic on open V' = f has derivatives of all orders and
f™(w) is given by Equation(5.1) for any suitable circle C' (or any suitable
closed curve) around w.
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5.6 Term-by-term differentiation, analytic func-
tions, Taylor series

Theorem 5.6.1. Let {f,(2)} be a sequence of functions which is uniformly
convergent to the function f(z) on a path . Then

lim fn )dz=/f(z)dz

n—aoQ

Proof. Let € > 0. Choose N s.t.
Ifu(2) = f(2)|<e VYn>N Vz=at) t; <t<t
(definition of uniform convergence). Then

[ fa(2)dz = [, f(2)dz| < [, |falz) = f(2)d]

< €ella) Vn>N
hence the result. O

Theorem 5.6.2. (term by term differentiation)

Let Y2, fo(2) be a series of holomorphic functions on an open set 'V,
which converges uniformly on a circle C' which, together with it’s interior, is
contained in V.

Then the series converges inside C to a holomorphic function F (say)

and -
n=1
inside C
Proof. Let w be inside C, then A = inf,cc |2z — w| > 0.
1 1
. < VzeC

|Z _ w|k:+1 — )\k—i—l

Therefore, > >° % converges uniformly to % z € C. Therefore,

n=1 (z—w
f(z)
dz= | ——————d
Z/ k+1 /C(Z_w)k—i—l o

and therefore,

> P W) = ) (w)

n=1
as required. O
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Definition Let C > V -5 C with V opn. Then f is called analytic on V
if, for each a € V- dr > 0 and constants cg, ¢, ¢a, ... € C, such that:

f(Z)=Co+cl(z—a)=02(z—a)2+--- Vzst. |[z—a|<r

The R.H.S. is called the Taylor series of f about a.

Lemma 5.6.3. If 0 < p < r then the series converges uniformly on

{z:]z—al <p}

Proof. Let 0 < p < R < 1. > cp(z — a)" converges for z —a = R, and
therefore, ¢, R™ converges. Therefore, 3K s.t. |c, R"| < K Vn. Therefore

K P\ "
n p— n < p— n < L = B (—)
|C (Z a) | — ‘Cn‘ |Z a’| — Rnp R

for all |z —a| < p. O
Therefore, we can differentiate term by term n times:
f™(2) = nle, + (n 4 1epya|z — al 4 -« - higher powers of z — a

Therefore, f(™(a) = nlc,, and therefore, ¢, = # ™ (a).
The Taylor coefficents are uniquely determined, f is C*°, and

o0

f(z)=2%f(")(z—a)” onlz—al<r

n=1

Thus, f analytic on V' = f holomorphic on V.
Conversely,
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Theorem 5.6.4. Let C >V L5 C be holomorphic on open V. Let C be
any circle, centre a s.t. C and it’s interior are contained in V. Then f has
a Taylor series about a convergent inside C'. Hence f is analytic on V.

Proof. Let w be inside C'. Then
fw) = 5o % dz

1 f(z)
2mi fC (z—a)—(w—a) dz

B ) —
27 fC (z—a) [1—w_a] dz

z—a

= ﬁ Jo % > (f:g)n dz

- Y (w—a) / e 1@,

omi z—a)"=1
N

v

Vv
Cn

= YoomfME)(w—a)"

as required. O
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Chapter 6

Further Calculus

6.1 Mean Value Theorem for Vector-valued
functions

Theorem 6.1.1. (Mean value theorem for vector valued functions)
Let M, N be finite dimensional normed spaces and let

MoV LN
be a C' function, where V is open in M. Let z,y € V and [z,y] C V. Then
1f (@ = fWll < klz -yl

where k = sup,¢(, 1 | f'(2)]]

Proof.
F) = fl@) = [y &flty+ (1 —t)adt
Ji £y + (L= 0)a (y o) de
~~ - N———
operator vector
Therefore,
1f )= F@I < Jo 1Tty + (L= 0zl lly — || dt

< fyklly—=|dt

= klly -
as required. O
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6.2 Contracting Map

Theorem 6.2.1. Let M be a finite dimensional real vector space with norm.
Let
Mov LM

be a C' function, V open in M, f(0) =0, f'(0) = 1.
Let 0 < e < 1, and let B be a closed ball centre O s.t.

11— fl(z)|| <e Ve e B
Then

If(@) = fl =0 —-ellz—yl Vz,yeB (6.1)

Thus fg is injective.

2. (1—e)BC f(B) C(1l+¢)B

(1+e)r

Proof. Let r =radius of B

1.
1@ =[1+(f(z) - <1+e VzeB

therefore,

MVT
| <

If @)l = [lf (=) = £(0) L+ e)llzll < (1 +e)r
for all z € B. Therefore, f(B) C (1+¢€)B
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MVT
| < elz—yll Va,yeB

11— f)z) = (1= f)y)
therefore, ||z —y[ —||f(z) — f(¥)|| < €llz — y||, and so
1f(z) = fW)l > (1 =)z —y
and hence Eqn(6.1).
3. To show (1—¢)B C f(B). Let a € (1—¢)B, define g(z) = z— f(z)+a.

Then

lg'@=I1-f(z)l<e VzeB
therefore,

MVT
lg(z) =gl < ellz—yll
therefore, g is a contracting map (shortens distances).
Also,
lg@)l = llg(z) —g(0) +af  since a = g(0)
< llg(z) — g(0)]| + lla]

IN

el + llall
< er+(l—€er VzeB

= T

therefore, g(x) € BVx € B. So g maps B into B and is contracting.
Therefore, by the contraction mapping theorem Jx € B s.t. g(x) = z.

ie.z— f(z)+a=z
i.e. f(x) =a. Therefore, a € f(B), and (1 —€)B C f(B) as required.

O

6.3 Inverse Function Theorem

Definition Let M > V -5 W C N where M, N are finite dimensional
normed spaces. Then f is called a C" diffeomorphism it

1. V open in M, W open in N
2. V L5 W is bijective
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3. fand f~!are C”

V is C" diffeomorphic to W if 4 a C"-diffeomorphism V — W.

Example
R - (0, 0)

flx) =e€%is C*, and f~'(x) = Inz is C®. Therefore, f is a C* diffeomor-
phism.

Theorem 6.3.1. (Inverse Function Theorem)

Let M >V L5 N be C" where M, N are finite dimensional normed
spaces and V' is open in M. Let a € V be a point at which
f'(a): M — N
1s tnvertible. Then 3 open neighbourhood W of a such that

is a C" diffeomorphism.
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f(W)

a
M
Proof. Let T be the inverse of f'(a) and let F' be defined by
F(z) =Tf(z+a)—Tf(a)
We have:
F(0) = Tf(a) - Tf(a) = 0
Uta f(U+a)
f
e
\\ T
/ N
+a:
_— =
c -TH@a)
U

F(U)

We prove that F' maps an open neighbourhood U of 0 onto an open
neighbourhood F(U) of 0. It the follows that f maps open U + a onto open
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f(U + a) by a C" diffeomorphism. Now
Fa)=T- f'(z+a)

— F'(0)=T- f'(a) = 1y

Choose a closed ball B centre 0 of positive radius s.s.

1
|F' (z) — 1| Si Vz € B
and also s.t. det F'(z) # 0. Then by the previous theorem (with € = 3) we
have:
F'g is injective
and
1
1£(z) = F)ll = Sz —9ll - Va,y,€ B
and
1
SBCF(B)
B
F F(B)
—_—
-
F—l
5B

therefore, F'=! : %B — B is well-defined and continuous. Let B° be the
interior of B, an open set. Put U = F~'(3B°) N BY, an open set. F(U) is
open since F'~! is continuous. So Fyy : U — F(U) is a homeomorphism of
open U onto open F(U).

Let G be it’s inverse. To show G is C".
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F(U)

Let z,z + h € F(U), G(z) =y, Gz + h) = y + [ (say), and ||h| > $]|!||.

Let F'(y) = S. Then F(y+ h) = F(y) + SlL+ ¢(l), where qub\%l)” — 0 as
|Il|| — O.

= z+h=z+ S+ ¢(),

— 1=S"h— 571(])

= Gz+h)=y+1=G(z)+Sh—51¢(])

o 15160 ls@Il 1l
IS 901 _ gy BOOL L
e < A

as ||h|| — 0 since ||I|| < 2||h| = % <2.

So, G is differentiable at x Vz € F(U) and

G'z)=8"=[F(y] " =[F(G@)"

It follows that if G is C*® for some 0 < s < r then G’ is C*® since G’ is a
composition of C'* functions

FI’ G, Hfl
and therefore G is C**'. So
GC° = Gt VO<s<r

therefore G is C" as required.
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Example Let f, g be C” on an open set containing (a, b)

tho----
gab)
b .......... =
T |
fab)  Z

Let

o of

or Oy

of,9) _ 40

o(z,y) 89 g
o Oy

at (a,b). Then (f, g) maps an open neighbourhood W of (a, b) onto an open
neighbourhood W' of (f(a,b), g(a,b) by a C" diffeomorphism. Therefore, for

each z,t € W' 3 unique (z,y) € W such that
z = f(z,y)

t=g(z,y)
and z = h(z,t), y = k(z,t) where h and k are C".
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Chapter 7

Coordinate systems and
Manifolds

7.1 Coordinate systems
Definition Let X be a topological space. Let V be open in X. A sequence

y= ..,y

of real-valued functions on V' is called an n-dimensional coordinate system
on X with domain V if

XoV-LylV)cRrR®

z:—y(z) = (y'(2),...,y"(2))

is a homeomorphism of V' onto an open set y(V) in R".

y(V)

y'(x) R"
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Example On the set V = {y # 0 or z > 0} in R? the functions r,6 given

by
T =rcosf
y=rsinf
—rT<0<T

map V homomorphically onto an open set in R?.

(xy)

=

Therefore, (7, 6) is a 2-dimensional coordinate system on R? with domain
V.

Definition If y = (y',...,y") is a coordinate system with domain V' and if
f is a real-valued function on V' then

f=Fy' ...y

for a unique function F on y(V) s.t. F = f-y !
We call f a C" function of y*,...,y" if F'is C" and we write

of OF (o ")
and call it the partial derivative w.r.t Y in the coord system y!,...,y".
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Note:

(@) = LEwHa)--- ")
= aFy(a) +tes)] _,

= % (ai(t)) ‘t:O

= rate of change of f along curve o; in V

y(a) + te;

where q; is the curve given by:

y(ei(t)) = y(a) +te; = (y'(a), .. y'(a) +1,...,y"(a))

therefore, along curve «; all coords #',...,y" are constant except i*® coord

y' and o;(t) is parameterised by change ¢ in i*" coord .

o is called the i coordinate curve at a.
7.2 ("-manifold
Definition Let y!,...,y™ with domain V, and z',...,2" with domain W
be two coordinate systems on X. Then these two systems are called C”-
compatible if each z* is a C” function of y!,...,y", and each ¢’ is a C"

function of 2%,...,2" on VNW.

We call X an n-dimensional C"-manifold if a collection of n-dimensional
coordinate systems is given whose domains cover X and which are C"-
compatible.
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Example the 2-sphere S? given by:
syt 422 =1 in R?

The function z,y with domain {z > 0} is a 2-dimensional coordinate system
on S2.

Similarly the functions z, z with domain {y > 0} is a 2-dimensional co-
ordinate system
On the overlap {y > 0,z > 0} we have:

r=2 r=2

y=+/1—12%—19>? z=1/1—122—1>?

these systems are C'*°-compatible. In this way, we make S? into a C™-
manifold.

7.3 Tangent vectors and differentials

Definition Let a € X, X a manifold. Let y',...,y" be co-ords on X at a
(i.e. domain an open neighbourhood of a). Then, the linear operators

9
oyt

0

B (7.1)

"

7
a a
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act on the differentiable functions f at a (i.e. functions f which are real-
valued differentiable functions of y',...,y™ on an open neighbourhood of a)

and are defined by:
0 _of

o, T~ o
The operators (7.1) are linearly independent since
;0 i 0y’ j s i
[a’ By a] Y=o By (a) =0} = (7.2)
) . _
= o —| =0 = o'=0 Vi (7.3)
oy |,

The real vector space with basis (7.1) is denoted 7, X and is called the tangent
space of X at a. If v € T, X then (7.2) shows that v has components vy’
w.r.t. basis (7.1)

Definition If a(t) is a curve in X then the velocity vector &(t) € TouX is
the tangent vector at a(t) given by taking rate of change along «/(t) w.r.t. ¢:

1.e.




therefore, «(t) is the tangent vector with components

S alt) = # (1)

1.e.

- 0
a(t) =9 (t) 5~
0% |age
The tangent space T, X does not depend on the choice of (compatible) coor-
dinates at @ since if z',..., 2" is another coordinate system at a, then
%‘ = velocity vector of j' coordinate curve of z',...,2" at a
z/ la
_ % 0
= 55 o, eT,X
therefore,
0 0
0z, oz |,
is also a basis for T, X, and %(a) is the transition matrix from z',..., 2" to
1 n
yh oy

Note also that the curve a(t) with coordinates:

y(a(t) = (y'(a) + a't,...,y"(a) + a"'t)

has velocity vector

Therefore, every tangent vector (at a) is the velocity vector of some curve,
and vice versa.

Definition Let a € X and f be a differentiable function at a. Then for each
v € T,X with v = &(t) (say), define

(dfg,v) =vf =a&(t)f = %f(oz(t)) = rate of change of f along v

Thus df, is a linear form on 7, X, called the differential of f at a df, measures
the rate of change of f at a. If y',...,y™ are coordinates on X at a then

b DN 0| oy
ya> 8y]a - ay] ay - 8y'7
120
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therefore, dy., ..., dy™ is the basis of T, X* which is dual to the basis a%l

of T, X.
Thus the linear form dy’ gives the i®® component of tangent vectors at a:

’.”’a’yn

a a

(dy, v) = i*® component of v = vy

Also, df, has components:
0 o0 ., of

of |
= 8—yj(a) dy;

(which is called the chain rule for differentials.)

therefore,

dfa

7.4 Tensor Fields

From now on assume manifolds, functions are C°.

Definition Let W be an open set in a manifold X. A tensor field S on X
with domain W is a function on W':

S,

which assigns to each x € W a tensor of fixed type over the tangent space
T,X at z. e.g.
Se: T X x (T, X)) xT,X — R

We can add tensor fields, contract them, form tensor products and wedge
products by carrying out these operations at each point z € W. e.g.

(R4+8)y =R+ S,
(R®S)y =R, ® S,

Definition A tensor field with no indices is called a scalar field (i.e. a real-
valued function); a tensor field with one upper index is called a vector field;
a tensor field with r skew-symmetric lower indices is called a differential r-
form; a tensor field with two lower indices is called a metric tensor if it is
symmetric and non-singular at each point.
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If y',...,y" is a coordinate system with domain W and S is a tensor field
on W with (say) indices of type down-up-down, then

j i 0 k
S:aﬂkdy ®a—yk®dy

where the scalar fields o,/ are the components of S w.r.t. the coordinates
y'.
If f is a scalar field, then df is a differential 1-form. If v is a vector field,

then v f is the scalar field defined by:

(vf)w = Uacf = <dfwa Uac> = <df, v>a:

i.e. vf = (df,v) = rate of change of f along v.
If (-|-) is a metric tensor on X then for any two vector fields u,v with
common domain W we define the scalar field (u|v) by

(ulv)e = (Ue|Ve)e

if v is a vector field then we can lower it’s index to get a differential 1-form
w such that

(w,u) = (v]u)
Conversely, raising the index of a 1-form gives a vector field. Raising the
index of df gives a vector field gradf called the gradient of f:

(gradf|u) = (df,u) = uf = rate of change of f along u
If (-|-) is positive definite then for ||u|| = 1 we have:
|(grad flu)| < [|gradf]|

Thus the maximum rate of change of f is ||gradf|| and is attained in the
direction of gradf.

A metric tensor (-|-) defines a field ds? of quadratic forms called the
associated line element by:

ds*(v) = (v|v) = ||v||* if metric is positive definite

If 3/* are coordinates with domain W then, on W:
each vector field u = o/ 62" with components o'

each differential r-form w = w;, 4, dyt A -+ - A dyt
each differential 1-form w = w;dy*

(w,u) = d'w;
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if f is a scalar field df =

6yZ
(@, = uf =o'l
if

91 9N_

oyt oyi) i

then . _
(:]") = gi;dy* ® dy’

and

ds® = Jij dy'dy’

grad f has components

i OF
oy’
therefore, (‘3f 5
gradf = ¢¥ 6yﬂ oy
SO 5% 5
|lgradf|| = (gradf|gradf) = (df, gradf) = gij@yfi@—?fj

Example On R?® with the usual coordinate functions z, 4, 2 the usual metric
tensor is
(]) =dz®dz+dy®dy + dz ® dz

with components

1 00

g;=1010|=gY
0 01
6%, a%’ % are orthonormal vector fields

af of of
d d —dy + —d
If = + By + By Y
and of 0 of o of o
gradf = + o5t A

8z dr ' Oydy 0z 0z

The line element is
ds® = (dz)* + (dy)* + (dz)?
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If 7,0, ¢ are spherical polar cordinates on R*® then

x = rsinfcos¢
y = rsinfsing
z = rcosf

therefore,

ds* = (dz)*+ (dy)® + (dz)?

= (sin @ cos ¢dr + 7 cos 6 cos ¢pdf — r sin 0 sin pde)?

+(sin 0 sin ¢dr + 7 cos 0 sin ¢df + 7 sin 0 cos pde)?

+(cos Odr — rsin 0df)?

= (dr)? +r%(dh)? + r*sin’® O(d¢)?

therefore,
10 0
9ij = 0 7'2 0
0 0 r%sin®6
and
- 10 0
=10 % 0
0 0 72 siln2 0
" O 4o O gy O
d d —d@ —d
if = + + ¢ ¢
and df has components:
of of of
or’ 00’ ¢

therefore, grad f has components

or 105 1 o
Or’ 12 00’ r2sin? 6 0¢

therefore,
of o 10f 0 1 9f 0
eradf = o T a0 a0 T 72’ 006 99
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7.5 Pull-back, Push-forward

Definition Let X and Y be manifolds and
X%y
a continuous map. Then for each scalar field f on Y we have a scalr field
¢f=f-¢

on X (we assume that ¢*f is C* for each C* f).
¢* f is called the pull-back of f to X under ¢.

¢ f f
a ¢ é(a)
X Y

(@0*f)(z) = f((x))

For each a € X we have a linear operator
T.X 25 T,Y
If v=a(t) € T,X then we define ¢,v by:

(6u01f = S F(6(a(0) = a(O1f - 6] = vl - 6] = o[ 7]

for each scalar field f on Y at ¢(a).

/\/ & b.(t)
)
o(t) OWg(a(t))
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Thus the velocity vector of a(t) pushes forward to the velocity vector of

¢(a(t))

Theorem 7.5.1. Let X -5 Y and let yl,...,y" be coordinates on X at a
and let

¢'(2),- .., " (z)
be the coordinates of ¢(x) w.r.t. a coordinate system z',...,2" on'Y at ¢(a).
Then the push-forward

T,X 25 TyY

has matrix ,
90 (2)
oy’
Proof.
i component of gb*aiyja = [‘ZS*a%J o
= 37,197
= Gi(a)
since ¢'(z) = 2'(¢p(x)), so ¢* = ¢*2*. 0

Thus the matrix of ¢, is the same as the matrix of the derivative in the
case R" — R". The push-forward ¢, is often called the derivative of ¢ at
a.

The chain rule for vector spaces

(¥ 8)(z) =4/ (¢(z)) ¢'(2)
corresponds, for manifolds, to:

Theorem 7.5.2. (Chain rule for maps of manifolds; functorial property of
the push-forward)

Let X 25V %5 7 be maps of manifolds. Then

Proof. Let &(t) be a tangent vector on X, then:

(V- d)(t) = velocity vector of ¥(p(a(t)))

= . [velocity vector of ¢(a(t))]

= uldui(t)]

as required. O
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Definition Let X -2 Y be a map of manifolds and w a tensor field on Y
with r lower indices. Then we define the pull-back of w to X under ¢ to be
the tensor field ¢*w on X having r lower indices and defined by:

(" wW)z[v1, - -+, V] = Woa)[Puvr, - - - s Puvy]
all vy,...,v, € T, X, Vx € X. ie.
(W) = ¢ [wo(a)]

We note the ¢* on tensor fields preserves all the algebraic operations such

as additions, tensor products, wedge products.
We have:

Theorem 7.5.3. if X —°>Y and f is a scalar field on Y, then
¢'df =do*f
i.e., the pull-back commutes with differentials
Proof. Let v € T, X. Then
((8*df)zsv) = ((df)g(a), Pw0)
= [p]f
= v[¢"f]

= {(d¢" [z, v)
therefore, ¢*df), = (d¢*f), Vx € X, and therefore ¢*df = d¢* f. O

7.6 Implicit funciton theorem

Theorem 7.6.1 (Implicit Function Theorem). (on the solution spaces
of | equations in n variables)

Let f=(f1,..., f!) be a sequence of C" real-valued functions on an open
set V in R*. Letc=(c},...,c) € R and let

X ={zeV: f(zx) =c rankf'(z) =}

Then for each a € X we can select n — | of the usual coordinate functions

al, . an



(say) so that on an open neighbourhood of a in X they form a coordinate
system on X. Any two such coordinate systems are C"-compatible. Thus X
is an (n — l)-dimensional C" manifold.

Proof.
f 1 1 1
of ... of .. of
ozl ox! ox™
fl — . « .
art .. arft .. ar
Oxl1 ox! ox™ Ixn

Let @ € X. THen f'(a) has rank [, so the matrix f'(a) has [ linearly inde-
pendent columns: the first [ columns (say). Put

F=(f ... flat+1,...,2"

then ) )
(G - G0 )
oy of!
R
0 0 1 0
\o - 00 1)
therefore,
1 1
or(@) - Gala)
det F'(a) = : : #0
1 1
arr(a) o (a)
Rn—l X Rn—l
| F : (W)
v :
| G |
I
R! ¢ R’
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By the inverse function theorem, F' maps an open neighbourhood W of a onto
an open neighbourhood F (W) by a C"-diffeomorphism with inverse G (say).
Note that F, and hence also G leave the coordinates z/*!, ..., 2™ unchanged.
F maps W N X homeomorphically onto {c} x U where U is open in R*~!.
Thus (z*1, ..., 2™) maps W N X homeomorphically onto U and is there-
fore an (n — [)-dimensional coordinate system on X with domain W N X.
Also, if
G=(G'...,G" 2", ... 2"

on F(W) then

1 gl A n
= G'(c,...,c o)
R ! I 41 n
= G ... ¢t a™)
on W N X. Therefore z!,..., 2! and C™ functions of z!*!,... 2" on W N X.
Hence any two such coordinate systems on X are C” compatible. U

Note: the proof shows that if (say) the first [ columns of the matrix

%(a) are linearly independent, then the [ equations in n unknowns
10,1 1
fHat ..o 2 = ¢
1
ity .2 =
determine z',...,z" as C” functions of z'*!,..., 2™ on an open neighbour-

hood of a in the solution space.

Example 1.
R >V LR

a C" function.

f_(9FN  _(of Of\_
f= <8xi>lxn_ (8331"“’833”) =V

are the components of the gradient vector field.

If Vf is non-zero at each point of the space X of solutions of the

equations:

flz, . ..,2") =c¢
(one equation in n unknowns) then X is an (n — 1)-dimensional C"-
manifold.
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If (say) %(a) # 0 at a € X then

are coordinates on an open neighbourhood W of ¢ in X and z!' isa C”
function of 22,...,2™ on W.

1 r2
2. RPoOV £, R two C" functions.

i aft aft
(afz):(g_jgé §>
If the two rows V f1, V2 are linearly independent at each point of the
space X of solutions of the two equations:

it . 2™ =
..., = ¢

(two equations in n unknowns) then X is an (n — 2)-dimensional C”
manifold. If (say)

o(f, %)

———= #0 ata € X

o(zt, z?) 7
then z3,2%, ..., 2" are coordinates on an open neighbourhood W of a
in X and 2! and 2% are C" functions of z3,...,2" on W.

7.7 Constraints

If f1,..., f are C" functions on an open set V in R* and c = (c!,...,c") we

consider the equations

fl — Cl fl — Cl
as a system of constraints which are satisfied by points on the constraint
manifold:

X = {1‘ eV:iflle)=c, ..., f'(2) = cl,rankgz () = l}

Let X — R" be the inclusion map i(xr) = zVz € X. Then for each scalar
field f on V:

(@ f)(x) = f(i(z)) = fz) VzeX



the pull-back ¢* f is the restriction of f to X. We call i*f the constrained

function F. If w is a differential r-form on V the i*w is called the constrained

r-form w. Similarly if (-|-) is a metric tensor on V and ds? the line element

the i*(+|-) is the constrained matrix and i*ds?® is the constrained line element.
For each a € X the push-forward

T,X 25 T,R™

is injective and enables us to identify 7, X with a vector subspace of T,R".
The constrained metric and constrained line element are just the restrictions
to T,X of the matrix and line element, for each a € X.

Example Let X be the constraint surface in R®:

fley,z)=c  fC7

We have: 5 5
df = fd + —fd + —fdz unconstrained
oy 0z
Pulling back to X, where f is constant, we get:
0= gid + g—fd + g—zdz constrained

If (say) 7& 0 at a € X then, by the implicit function theorem, the con-
strained functlons x,y are coordinates on X in a neighbourhood W of a and
constrained z is a C" function of x,y on W.

z=F(z,y)
say. Now
_ i f /of
dz=- (8:5 8z>dx <8y 8z)d

Therefore,

0:\ _oF _ of jof

o). ~— oz  0z/ 0z

0:\ _oF __of yof

oy ).~ Oy (9y 0z

The usual line element on R? is
ds® = (dz)* + (dy)* + (dz)? unconstrained
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pulling back to X gives:

st = (e o+ () + [ (3 /8) ao = (% /) o]

= [1 + (% g_ic)?} (dz)* + 2 EF dz dy + [1 + (g_i %)2} (dy)?
The coefficients give the components of the constrained metric on X with
respect to the coordinates x and y
Example using spherical polar coordinates on R? the usual line element is
ds® = (dr)? 4+ r*(df)?* + r? sin® 0(d¢)?
Pulling back to the sphere S? by the constraint:
r = const

we have:
ds* = r*(df)* + r* sin®(d¢)*

Thus the constrained line element has components:

r? 0
0 7r%sin?6

7.8 Lagrange Multipliers

A scalar field f on a manifold X has a critical point a € X if df, = 0.
ie. gy{; (a) = 0 for a coordinate system 3’ at a. (e.g. a local maximum or
minimum or saddle point)

Problem given a scalar field F' on V open in R”, to find the critical point
of constrained F', where the constraints are:

1 1 1 _ 1
ff=c,....f=c¢
and f* are C™ functions on V

Method Take f1,...,fY, 2"t ... 2" (say) as coordinates on R? as in the
proof of the implicit function theorem, so

l n
dF = Z SJJ; df* + Z gii dz’ unconstrained
i=1

i=I+1
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Thus

" OF .
dF =0+ Z %d.@l constrained
i=l+1

This is zero at a critical point a, so %(a) =0,i=101+1,...,n, and
hence

!
oF ,
dF, = —(a)df*
223 a7 (@4
at a critical point a of constrained F. If we put

oF

A= g

(a) = rate of change of F at a with respect to the i constraint

we have:
dF = \df' 4 - -+ Ndf’

at a where the scalars Ay, ..., \; are called Lagrange multipliers.

Since dF is a linear combination of df?,...,df' at a we can take the
wedge product to get the equations:

dF Ndf' A+ ANdff =0

fl=c,... fl=¢

which must hold at any critical point of constrained F.

7.9 Tangent space and normal space
If f is constant on the constraint manifold X then
df =0 constrained

therefore,
(df,&(t)) =0

for all curves in X. Hence the system of [ linear equations
dft=0,...,df' =0

give the tangent space to X at each point. Also if (-|-) is a metric tensor
with domain V' then

(gradf|a(t)) = (df, &(t)) =0
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for all curves in X. Therefore gradf is orthogonal to the tangent space to X

at each point. Hence
gradf',..., gradf!

is a basis for the normed space to X at each point.
At a critical point of constrained F we have:

dF = M\df*t 4 - 4+ Ndf!
and raising the index gives:
gradF = A\ gradf! + - - - 4+ \grad f!

thus gradF' is normal to the constraint manifold X at each critical point of
constrained F'.

7.10 77 Missing Page

1. = w is closed.

However w is not exact because it’s integral around circle a(t) =
(cost,sint) 0 <t < 2mis

/ o |COStcOst — (sint)(—sin )]
w=7 —
o cos? t + sin” ¢

Note: on R? — {negative z-axis} we have:

2r
dtz/ dt =27 #£ 0
0

z = rcosf —rT<0<n7
y = rsinf

therefore,

_ rcosf[sinfdr +rcosfdf] —rsinblcos@dr —rsinfdi]
B r2cos? § + r2sin? 6§ B

do

w

sO. faw is path-independent provided « does not cross the -ve z-axis.
[, w=10(b) — 6(a), and w is called the angle-form

2. Let w be a differential n-form with domain V open in R"
w= f(z',...,2")dz"' A---Adax" (say) 2 usual coord
then we define:

/ W= / flx,. .., zp)dx dxy ... dxy, Lebesgue integral x; dummy
1% 1%
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7.11 Integral of Pull-back

Theorem 7.11.1. Let V -2 é(V) be a C! diffeomorphism of open V in R®
onto open ¢(V') in R, with det ¢’ > 0. Let w be an n-form on ¢(V). Then

Jore= o

[so writing {w, V) to denote integral of w over V we have: {¢*w, V) = (w, pV)
adjoint]

Proof.

Let
w = f(z ..., 2M)dz' Ao Ada"

¢ = (¢%..., ")
ie. ¢'(x) = 2'(d(x)) ie. ¢ ="+ = Pp*x.
Then
(}5*(4) = f((bla"'a(bn)d(bl /\/\d(bn
= f(¢(x)) gzﬁ Az A+ A %dazi"
= f(¢(z))det (gfj (3:)) dZ A - A da?
therefore,

/V ' = /V F(6(2)) det ¢ (z)dy day - .. day, = /¢ @

by the general change of variable theorem for multiple integrals (still to be
proved). O
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Corollary 7.11.2. Let y',...,y" be positively oriented coordinates with do-
main V open in R*. Then

/f(yl,...,y”)dyl/\---/\dy”: / fyt, - yn)dyr dys - . . dyy
v _ JyV) P
non-dummy y* with wedge Lebesgue integral over y(V).‘;l, .., Yn dummy. No wedge
y=(y"...,y")
1% y(V)
Proof.

therefore,
LHS = fv y*[f(z, ..., 2") dzt A cdots A dz™]
= Jy f@h .. 2" det Ao Ada”
= fy(v)f(a:l,...,xn)d:clde...da:n x1,...,Z, dummy

= RHS

7.12 integral of differential forms

To define [, w where w is an n-form and X is an n-dimensional manifold
(e.g. wis a 2-form, X a surface) we need some topological notions:

1. A topological space X is called Hausdorff if, for each a,b € X, a # b, 3
open disjoint V,W st. a €V, be W.
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2. A set A C X is called closed in X if it’s complement in X
A={zeX:z¢Z}

is open in X.

AI

3. If A C X then the in’riersection of all the closed subsets of X_ which
contain A is denoted A and is called the closure of A in X; A is the
smallest closed subset of X which contains A.

4. Let S be a tensor field on a manifold X. THe closure in X of the set
{reX:S,#0}

is called the support of S, denoted supp S.

Theorem 7.12.1. Let X be a Hausdorff manifold and let A C X be compact.
Then 3 scalar fields
Fy, ..., F

on X s.t.
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1. F; >0
2. Fi+---4 F, =1 on A (partition of unity)

3. each supp F; is contained in the domain V; of a coordinate system on
X.

Proof. (sketch) Let

let

bis C*®, suppb=[—1,1], 0 < b < 1. (bis for bump).
Let a € A. Pick a coordinate system y on X at a with domain V. Pick
a ball centre y(a) radius 2r > 0 contained in y(V'). Put

o) :{ b(ny(z);y(am) freV }

0 ifr gV
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then h is C*°, supph C V,0<h <1, h(a) = 1; ’bump’ at a.

Let W = {z € X : h(xz) > 0}. then W is an open neighbourhood of a
and h > 0 on W.

Thus, for each a € A we have an open neighbourhood W, of a and a
scalar field f, s.t. h, > 0 on W,, h, is C*°, supp h, C a coord domain V,
0<h,<1.

hq is a bump at a, for each a € A. Since A is compact we can select a
finite number of points a,, ..., a; such that W,,,..., W,, cover A. THen put

ha, .
Fy = { hatthay ithe, # 0
0 ith,, =0

to get the required scalar fields Fi,..., Fj.
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ha,
X
F+F=1
F1 FZ
O
7.13 orientation
Definition Let 3!, ..., y" with domain V, z!,..., 2" with domain W be two
coordinate systems on a manifold X. Then they have the same orientation
if
oy, ..., y" oy
W58 _aa o
a2, ..., 2") 027
on VNW.
Since _
o oy o
0z 029 Oy
this means that %a, cen %a has the same orientation in 7, X as 6—‘;(1, e %a

eachaec VNW.

We call X oriented if a family of mutually compatible coordinate systems
is given on X, whose domains cover X and any two of which have the same
orientation.

o(z,y)
o(r,0)

Example z = rcosf, y = rsinf. Then = r > 0. Therefore z,y and

r, 0 have the same orientation.
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Definition Let w be a differential n-form with compact support on an ori-
ented n-dimensional Hausdorff manifold X. We define

[

the integral of w over X as follows:

1. Suppose suppw C V where V is the domain of positively oriented
coordinates y!,...,y" and w = f(y!,...,y")dy' A---Ady™ on V. Then
define:

/wz flyr, - yn) dyr - - . dy, dummy ;
y(V)

@/
el T

This is independent of the choice of coordinates since if suppw C W

where W is the domain of positively oriented coordinates z',..., 2"
then
w = fly'...,y")dyt Ao Ady® = g(z',...; 2" dz" N-- - Ad2™

(say) on VNW

— y*[f(xl,--'axn)dxl/\--'/\dx" _ z*[g(ml,...,m")dxl/\---/\dx”
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(say). So wy = ¢*w2 where ¢ = z-y~' : y(VNW) — 2(VNW).
Therefore,

fy(v) flzy, ... zy)dxy .. dxy, = fy(v) Wy = fy(VﬂW) Wy = fz(VnW) Wa

= fz(W) Wy = fz(W) g(x1, ..., xp) dxy .. .dzy
as required.
2. Choose a partition of unity
F+. 4+ F=1
on suppw. Put w; = Fyw. Then
wp+t-rFtwp=w

and suppw; C supp F; C V; where V; is the domain of a coordinates

system. Define
/w:/w1+...+/wk
X X X

using (1.). This is independent of the choice of partition of unity since
if

Gi+---+G =1 on supp w
then

Z;:l fX ij = Z;:l fX Zf:l EG]w
22:1 Zf:l fX FiGjw

similarl k
= D fX Fw

Definition If A C X is a Borel set we define

Jyo= o
A X

Example to find the area of the surface X:
Pyt +z=2, z>0

We have:
2rdr + 2ydy +dz=0
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constrained to X. Therefore,

ds? = (dz)*+ (dy)*+ (2zdz + 2ydy)®>  constrained to X
= (1+42%)(dz)? + 8xydx dy + (1 + 4y?)(dy)?
1+42>  4day
i\ day 14492
Yy Yy
therefore, /g = \/det Gij = \/1 + 422 + 492, So, area element is v/1 + 422 + 4y2 dxA
dy. Therefore:
area = [+/1+42?+4y?dx Ndy
= [V1+4r?rdrAdb
= o[ T 2ar] do

31V2
- [§g<1+4r2)2]0

= 27—

= 13
_37'(
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Chapter 8

Complex Analysis

8.1 Laurent Expansion

Theorem 8.1.1. Let f be holomorphic on V — {a} where V is open and
a € V. Let C be a circle, centre a, radius r s.t. C and it’s interior is
contained in V. Then 3{c,} n=0,£1,4+2,... € C s.t.

flz) = ch(z—a)” in0<|z—al<r

The RHS 1is called the Laurent series of f about a. The coefficient c, are
uniquely determined by:

_ ! f(2)
=g ) o

Proof. Let w be inside C. Choose circles (', Cy as shown with centres a, w:

Cy
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f(w) = omi fC; z 213)d'z

I U (GO
omi JO 2— a 271'1 01 z— w
_ f(z) 1 f(z)
—  2m fC (z—a)—(w—a) dz + 2mi fCl (w—a)—(2—a) dz
_ f(2) 1 f(2)
—  2m fC (z— a)[l w— a] dz + o2mi fCl (w—a)[l—ﬁ] dz
= om fC (z— a) Zn 0 ( ) 27rz fCl w—a) n= (Zi(jz) dz
1 f(z) 1 f(2)
= o0 — n____ YN d oo _ -n—1_—" _J\") d
2in=o(w =) 27ri/c (z —a)ntl 2+ Lno(w —0) 2mi Jo, (2 —a)™ z
+ve pow;rrs (w—a) -ve powt:r; (w—a)
as required. O

Definition If f is holomorphic in V' — {a} anf

o
c_ c_
= ch(z—a)"=---+ 22—1- tota(z—a)+ -
p(2)

is the Laurent series of f at a. p(2) = Y. 0 ___ ca(z—a)™ is called the principal

part of f at a. p(z) is holomorphic on C — {a}.
f(2) — p(z) is holomorphic in V (defining it’s value at 0 to be ¢).
For any closed curve « in C — {a}:

fap(z) dZ = fa [ .. + (Zc__;)Z + ;—TZ] dZ
= +O+Cl dz

a z—a

= 2miRes(f,a) W(a,a)

where W(a,a) = 5= [ % is the winding number of o about a. and

Res(f,a) = c_1 is the residue of f at a
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8.2 Residue Theorem

Theorem 8.2.1 (Residue Theorem). Let f be holomorphic on V—{as,...,a,}
where ay, . .., a, are distinct points in a star-shaped (or contractible) open set
V. Then for any closed curve o in V — {aq, ..., a,} we have:

/f(z) dz = 2mi ZRes(f, a;) W(a, a;)

Proof. Let pq,...,p, be the principal parts of f at aq,...,a, respectively.
Then f—(p1+- - -+pr) is holomorphic on V. Therefore, [ [f — (p1 + -+ pn)] dz =
0. So,

/f(z) dz = Z/pj(z) dz = 27riZRes(f, a; )W (e, a;)

as required. O

Definition If f is holomorphic on a neighbourhood of a, excluding possibly
a itself, and if the Laurent expansion has at most a finite number of negative
powers:

fz) = Y l,alz—a)
= cz—a)"+cppi(z—a)" 4+ - - en # 0
= (2—a)"[cn+cnpa(z —a) + -]
= =(2—a)"fi(z)  fi holomorphic on a nbd of a and f,(a) # 0

then we say that f has order n at a.
e.g. order 2:

f)=c(z—a)’+c(z—a)’ +--- o #0

order -3:

C_9 C_9 (&1

I = e " e T om0

+eo+alz—a)+--- c3#0

If n > 0 we call a a zero of f.
If n <0 we call a a pole of f.
n = 1: simple zero; n = 2: double zero.
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n = —1: simple pole; n = —2: double pole.
If f has order n and g has order m:

fz) = (z=a)"fi(2) fila) #0

9(z) = (z—a)"q:1(2) qi(a) #0
then:
f(2)9(2) = (z—a"*™fi(2)qi(2)  fg has order n+m

% = (z— a)”’mi—gg 5 has order n — m

The residue theorem is very useful for evaluating integrals:

Example to evaluate Ooo 2&‘;’5 , a > 0 we put
flz) = zﬁi; [¢? is easier to handle than sin z]
(z—ifz)e(z—l—ia)
Simple poles at ia, —ia.
o
\\
I Z'a N
-R R
- —ia

Choose a closed contour that goes along z-axis —R to R (say) then loops
around a pole, upper semi-circle « (say).

R ix iz

Te ze

——dx ———dz = 2mi Res(f, ia
/_Rx2+a2 +/¢xz2+a2 d (£,0)
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L if f(z) =

¢

z—ia

(z —ia)f(z) = c+ c(z —ia) +

+co+ iz —ia)+---
(

on neighbourhood of ia then
_ Za)2 + e

on neighbourhood of

ia. Then lim, ;,(z —ia)f(z) = ¢ = Res(f,ia). Therefore

Res(f,ia) = ¢

. z eiz
= lim, 4 tia

N[

f(z)

lim, 4 v—ia

ia

—a
2ia €

2. a(t)= Re® 0 <t <7 = R(cost + isint). Therefore

which — 0 as R — oo since

Therefore

SO

2 eiz - T Reit eZ'R(COS t+isin t)iReit
fa z24a? d'z‘ - fO R2e?it4q? dt
R? T —Rsint
< R a2 fO € dt
s s
lim ¢ Rsint gy PCT lim e B0t gt =0
R—o0 R—o0
0 0
) - o —a
z(cosx +isinx) e
/ 5 5 de +0= 27—
% e+ a 2
* rsinz a
— dz = e
o Tt a

Example to calculate f_oooo Si%da: put f(z) = % holomorphic except for
simple pole at z = 0.




Choose a closed contour along z-axis from —R to —r, loops around 0 by
B(t) = re® then r to R then back along a(t) = Re®.

fTeia: eiz R el
/ —dr + —dz—l—/ —d:c—l—/—dz-O
_R T BZ

L. Res(f,0) = limsso(z — 0)f (=) = lim 0 ¢ = 1

2.

0 Rett

iz
e~ d‘ —

fﬂ' eiR(cost+isint); poit dt‘

S foﬂ 6—Rsint dt

which — 0 as R — 0.

3. £ = 1+ ¢(z), g holomorphic in neighbourhood of 0. Therefore

—dz-/3 /ﬁg(z)dz

Let sup |g(z)| = M (say on a closed ball centre 0 redius § > 0 (say).

‘ /B 9(2) dz

< Mrr—0asr —20

ifr<é
dz T jret ™
_:—/ .dt:—/ idt = —im  Vr
gz o Tret 0
therefore _
1z
lim —dz = —im
r—0 8 VA
therefore
0 eiz [e'9) eiz
/ —dr—iw—i—/ —dzr+0=0
o X 0 X
SO
/°° cosx +ising )
——dx =1m
o z
and

oo
sinz
/ dr=m
o T
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8.3 Uniqueness of analytic continuation

Theorem 8.3.1 (Uniqueness of analytic continuation). Let f, g be holo-
morphic on a connected open set V. Let a € V and let {zx} be a sequence in
V' (# a) converging to a s.t.

flz) =g(z)  Vk
Then f =g on V.
Proof. Put F = f — g, so F(z) =0. Toshow F=0o0n V.

1. F is holomorphic at a. Therefore F(2) = by+b1(2—a)+by(z2—a)?+---
on |z —a| < R (say). F(a) =lim F(z;) = 0. Therefore by = 0.

Suppose we know that bg, by, ..., b,_1 are all zero.
F(z) = (z—a)™[bpm + bmsi(z —a) + bpio(z —a)? + -]
= (Z o a)mFm(z)

(say). F(z) =0, so Fj,(2) = 0 and F,(a) = 0. Therefore b,, = 0.
b, = OVr and F' = 0 on an open ball centre a.

2. Pt V. =WUW' where W = {z € V : F' =0 on an open ball centre z}
and W' =V — W. Then W is open, and a € W by 1. Therefore W
is non-empty. Suppose ¢ € W' and c¢ is a non-interior point of W’.
Then each integer 7 > 03w, € W s.t. |w, —¢| < L, F(w,) = 0 and
limw, = ¢. Therefore F' = 0 on an open ball centre ¢ by 1., and c € W.
Therefore W’ is empty.

O
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Chapter 9

General Change of Variable in
a multiple integral

9.1 Preliminary result

Theorem 9.1.1. Let R* DV -2 R* be CY, V open, a € V, det ¢'(a) # 0.

Then
lim m(¢B)
m(B)

where the limit is taken over cubes B containing a with radius B — 0.

= [ det ¢'(a)]

Proof. Let || - || be the sup norm on R".
(e, ..., an)|| = max(|aq], ..., |am])

so a ball, radius r is a cube, with side 2r.

Let 0 < € < 1. Put T'(z) = [¢'(z)]"!. Fix a closed cube J containing
a and put k = sup,c, [|T(z)|. Choose § > 0 s.t. ||¢'(z) — ¢'(y)|| < £ all
lz —yll <25 2,y € J.

If B is a cube C J containing a of radius < 4. and centre ¢ (say).

Consider:
T(c)¢ has derivative T'(¢)¢'(x) which equals 1 at x = ¢ and

IT(c)d/ (z) = 1| = [[T(c)¢'(z) = T(c)d ()]
< T(l'(z) — &' ()

k

IA
o
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therefore (1 — €)B; C T(¢)¢pB C (1 + €)By, where Bj is a translate of B to
new centre 7'(c)¢(z). Therefore

(1 —¢)"m(B) < |detT(c)|m(¢B) < (1 + €)"m(B)

= (1—¢)" < |detT(c)| m(B) <(1+¢)"
B
= lim|det T(c)\n;((qu)) =1
— | det T(a)| lim m(f;) _1
Therefore: (6B) .
...m ’
im =" = TaerT() — | 46t (@)l
as required O

Theorem 9.1.2. Let f be a continuous real valued function on an open
neighbourhood of a in R*. THen

imifo(x)d:c: a
lim 227 = (o)

where the limit is taken over cubes B containing a with radius B — 0.

Proof. Let € > 0. Choose § > 0 s.t. |f(z) — f(a)| < eV||Jz — a|| < . Then
each cube B containing a of radius < g we have:

S f(z)dx Y

ol Uslf@) — @lde] _ em()
m(B)

m(B) — m(B)

=€

hence result. O

Recall that the o-algebra generated by the topology of R” is called the
collection of Borel Sets in R”.

Theorem 9.1.3. Let A be a Borel set in R", B be a Borel set in R®. Then
A x B is a Borel set in R5.

Proof. For fixed V' open in R", the sets:
{V x W : W open in R°} (9.1)
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are all open in R"**. Therefore the o-algebra generated by Eqn(9.1):
{V x B : B Borel in R*}

consists of Borel sets in R™*. Hence for fixed B Borel in R®, the set:
{VxB:V openin R (9.2)

are all Borel sets in R"**. Therefore the o-algebra generated by Eqn(9.2):
{Ax B: ABorelin R"}

consists of Borel sets in R"t¢. Therefore A x B is Borel for each A Borel in
R", B Borel in R®. O

Theorem 9.1.4. Let E be a lebesque measurable subset of R*. THen there
1s a Borel set B containing E such that

B—E=BnNEF
has measure zero, and hence m(B) = m(E).

Proof. We already know this is true for n = 1. So we use induction on n.
Assume true for n — 1. Let £ C R*, E measurable.

1. Let m(E) < oo. Let k be an integer > 0.
ECR"' xR
choose a sequence of rectangles
AL X B—1,A9 X Bs, ...

covering E with A; C R* ! measurable and B; C R measurable, and
such that

m(E) < 3 m(A)m(B;) < m(E) + .

By the induction hypothesis choose Borel sets C;, D; s.t.

Put By, = U2, Ci x D;. Then E C By, By is Borel and m(E) <
m(By) < 3272, m(Co)m(d;) < m(E) + .

Put B = (o Bx- Then E C B, B is Borel and m(E) = m(B).
Therefore m(B N E') = m(B) — m(E) = 0 as required.
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2. Let m(E) =o00. Put By ={z € E: k< |z| <k+1}. E =, Ex is
a countable disjoint union, and m(E) < co. For each integer k choose
by 1. Borel By, s.t. B, C By and m(Bk N E;c) =0
Put B = |JBk. Then E C B and m(B N E') = m(B) — m(E) as
required. Vaddddddddds

O

9.2 General change of variable in a multiple
integral

Theorem 9.2.1 (General change of variable in a multiple integral).

LetR* SV -5 W C R be a C! diffeomorphism of open V onto open W.
Let f be integrable on E. Then

/W f(z)dx = /Vf(gb(a:))| det ¢'(z)| dz (Lebesgue Integrals) (9.3)

Proof. 1. wehave f = f*— f~ with f*, f~ > 0. Therefore, it is sufficient
to prove Eqn(9.3) for f > 0.

2. if f > 0 then 4 a monotone increasing sequence of non-negative simple
functions { f,,} such that f = lim f,, so, using the monotone convergence
theorem, it is sufficient to prove Eqn(9.3) for f simple.

3. if f is simple then f = Zk a;xp, with {E;} Lebesgue measurable,

i=1
so it is sufficient to prove Eqn(9.3) with f = xp with E Lebesgue
measurable.

4. if E Lebesgue measurable 3 Borel B s.t. F C B and Z = B — E has
measure zero. Therefore, xg = x — Xz, and it is sufficient to prove
Eqn(9.3) for f = xp, B Borel, and for f = xz, Z measure zero.

5. If f = xg with E Borel then E = ¢F with F Borel and Eqn(9.3)
reduces to

/WX¢F($)d$=/VXF(iL’)|det¢l($)|dl"

m(6F) = /F | det ¢'(z)| dz (9.4)

If Eqn(9.4) holds for each rectangle F' C V then Eqn(9.4) holds for F €
ring R of finite disjoint unions of rectangles C V.
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Therefore Eqn(9.4) holds for F' € monotone class generated by R.
Therefore Eqn(9.4) holds for F' € o-algebra generated by R (monotone
class lemma). So Eqn(9.4) holds for any Borel set FF C V

. to show Eqn(9.4) holds for any rectangle ' C V: for each rectangle
FCV put

A(F) = m(¢F) — /F | det ¢! (2)| dz

Then, A is additive:
AUB) =D ABy)
for a disjoint union.

Must prove A(F) = 0 for each rectangle F'. Suppose B is a rectangle
for which A\(B) # 0.

Suppose B is a cube. |[A(B)| > 0. Therefore, 3¢ > 0 s.t. |[A(B)| >
em(DB).

Divide B into disjoint subcubes, each of % the edge of B. For one such,
B say,
lalmbda(By)| > em(By)

Sivide again
[A(Bz)| = em(By)

continuing we get a decreasing sequence of cubes { By} converging to a
say, with
B
B
h—00 m(Bk)

>e>0

But (¢6Bk)— [, |det ¢'(z)| d
. . m - € X X
= |det¢'(a)| — | det ¢'(a)]

= 0

a contradiction. Therefore A\(B) = 0 for all cubes B. Therefore,
m(¢B) = [, |det ¢/(x)| dz for all cubes B as required.

. Now suppose Z has measure zero, and choose a Borel set B s.t.
ZCBcCV

and s.t. B has measure zero.
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Then
m(6Z) < m(6B) - /B | det ¢'(z)| dz = 0

since B has measure zero. Therefore ¢Z has measure zero.

Therefore under a C! diffeomorphism we have:
Z of measure zero = ¢~Z of measure zero

therefore f = xz with Z of measure zero = f---¢ = x4-1z with
¢~ 1Z of measure zero.

Therefore, Eqn(9.3) holds for f = x since then both sides are zero.
This completes the proof. O
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