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Chapter 1

Vector Spaces

Recall that in course 131 you studied the notion of a linear vector
space. In that course the scalars were real numbers. We will study the
more general case, where the set of scalars is any field K. For example

Q,R,C,Z/(p).

Definition. Let K be a field. A set M is called a vector space over the field
K (or a K-vector space) if

(i) an operation
MxM— M
(z,y) =z +y

is given, called addition of vectors, which makes M into a commutative
group;

(ii) an operation

KxM-—M
(A, z) — &
is given, called multiplication of a vector by a scalar, which satisfies:

(a) Mz +y)=\r+ Ay,
(b) (A + p)x = Ax + pz,

)
(€) Apz) = (M),
(d) lx ==

forall \,p € K, z,y € M, where 1 is the unit element of the field K.

1-1



The elements of M are then called the vectors, and the elements of K are
called the scalars of the given K-vector space M.

Ezxamples:

1. The set of 3-dimensional geometrical vectors (as in 131) is a real vector
space (R-vector space).

2. The set R™ (as in 131) is a real vector space.
3. If K is any field then the following are K-vector spaces:
(a) K" ={(aq,..., ) aq,...,0, € K}, with vector addition:
(a1, yan)+ (Bry- o, Bn) = (a0 + B1, ..o, + Bn),
and scalar multiplication:
AMag, ..., an) = (Aag, ..., Aay,).

(b) The set K™*™ of m x n matrices (m rows and n columns) with
entries in K (m,n fixed integers > 1), with vector addition:

105 IR 05 1) Bii o Pin
+ : :
A1 Ol ﬁml e ﬁmn
an+ 0 Qi+ Bin
= : : )
U1 + B+ Qe+ B

and scalar multiplication:

a1y o0 g Aagr o Aagg

Am1  * Opp )\aml )\amn

(c) The set K¥ of all maps from X to K (X a fixed non-empty set),
with vector addition:

(f +9)(x) = fz) + g(2),

and scalar multiplication:

(Af)() = A(f (@)
forallz € X, f,g€ KX, A€ K.
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Definition. Let N C M, and let M be a K-vector space. Then N is called
a K-vector subspace of M if N is non-empty, and

(i) z,ye N =x+4+y € N closed under addition;
(ii) N\e K, x€ N= X r €N closed under scalar multiplication.

Thus N is itself a K-vector space.

Ezxamples:
1. {(o,3,7) : 3a+ B3 —2vy=0; «a,3,7 € R} is a vector subspace of R3.

2. {v:v.n =0}, nfixed, is a vector subspace of the space of 3-dimensional
geometric vectors (see Figure 1.1).

n

Figure 1.1

3. The set C°(R) of continuous functions is a real vector subspace of the
set R® of all maps R — R.

4. Let V be an open subset of R. We denote by

C°(V) the space of all continuous real valued functions on V,

C" (V) the space of all real valued functions on V' having contin-
uous rth derivative,

C>*(V) the space of all real valued functions on V' having deriva-
tives of all .

Then
ceV)yc---cot(Vyco(vyc---c V) cRY

is a sequence of real vector subspaces.
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5. The space of solutions of the differential equation
d*u
— fwu=0
dzx?
is a real vector subspace of C°(R).
Definition. Let uq, ..., u, be vectors in a K-vector space M, and let aq, ..., «,

be scalars. Then the vector
Uy + - F QU
is called a linear combination of uq, ..., u,. We write
S(uy, ..., uy) ={aqus + -+ opu, oy, ..., q, € K}

to denote the set of all linear combinations of wy,...,u,. S(us,...,u,) is a
K-vector subspace of M, and is called the subspace generated by uq, ..., u,.

If S(uy,...,u,.) = M, we say that uy,...,u, generate M (i.e. for each
x € M there exists ay,...,q, € K such that x = aju; + - - - + a,u,).

FExamples:
1. The vectors (1,2),(—1,1) generate R? (see Figure 1.2), since
a—+f3 0 — 2«

2. The functions coswz, sinwx generate the space of solutions of the

differential equation:
d*u
— +wu =0.
dx?

(1.2)

(-1,

1-4



Figure 1.2

Definition. Let uq,...,u, be vectors in a K-vector space M. Then

(i) wi,...,u, are linearly dependent if there exist ay,...,a, € K not all
zero such that
oy + -+ o, = 0;

(i) wuq,...,u, are linearly independent if
arug + -+ apu, =0

implies that aq,...,a, are all zero.

Ezxample: coswz, sinwz (w # 0) are linearly independent functions in

C>*(R).
Proof of This > Let
acoswr + fsinwr =0; o, €R
be the zero function. Put  =0:a=0;put z = - : 8 =0. <
Note. If uq, ..., u, are linearly dependent, with
a1uy + asus + - - + agu,. =0,

and oy (say) # 0 then

up = —(a] taguy + -+ a tapu,).

Thus ug, . .., u, linearly dependent iff one of them is a linear combination of
the others.
Definition. A sequence of vectors uy, ..., u, in a K-vector space M is called
a basis for M if

(i) wuq,...,u, are linearly independent;

(ii) wuq,...,u, generate M.
Definition. If u,...,u, is a basis for a vector space M then for each z € M

we have:
r=o'u; +---+a"u,

for a sequence of scalars:
1 n
(o', ...,a"),

which are called the coordinates of x with respect to the basis uy, . . ., Uy.
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The coordinates of x are uniquely determined once the basis is chosen
because:

r=a'u + -+ a"u, = Flug + -+ U,

implies:
(@' =B Yuy + -+ (@ — a™)u, =0,
and hence
al—pt=0,...,a" - " =0,
by the linear independence of uq, ..., u,. So

al=p . at =6
A choice of basis therefore gives a well-defined bijective map:

M — K"

x +— coordinates of x,

called the coordinate map wrt the given basis.
The following theorem (our first) implies that any two bases for M must
have the same number of elements.

Theorem 1.1. Let M be a K -vector space, uy, ..., u, be linearly independent
in M, and y,...,y, generate M. Then n < r.

Proof »

U = oy + -+ Yy
(say), since 1, ...,y, generate M. «ay,...,q, are not all zero, since u; # 0.
Therefore oy # 0 (say). Therefore y; is a linear combination of uy, y2, ys, - . . , Yr-

Therefore uq, Y2, y3, . . ., y, generate M. Therefore

Uy = frur + Baya + Bayz + - - + Bryr

(say). (s, ..., B, are not all zero, since uy, ug are linearly independent. There-
fore By # 0 (say). Therefore ys is a linear combination of wuy, us, ys, . .., Y-
Therefore uq, us, ys, . . ., y, generate M.

Continuing in this way, if n > r we get uq, ..., u, generate M, and hence
U, is a linear combination of wuq,...,u,, which contradicts the linear inde-
pendence of uq, ..., u,. Therefore n < r. «
Note. If uq,...,u, and yq, ..., y, are two bases for M then n = r.

Definition. A vector space M is called finite-dimensional if it has a finite

basis. The number of elements in a basis is then called the dimension of M,
denoted by dim M.
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Examples:
1. The n vectors:
er = (1,0,0,...,0),es = (0,1,0,...,0),...,e, = (0,0,...,0,1)
form a basis for K™ as a vector-space, called the usual basis for K™.
Proof of This > We have
aje; + -+ ape, = a1(1,0,...,0) + -+ a,(0,...,0,1)
= (o1, 9,...,0,).
Therefore

(a) eq,...,e, generate K",

(b) aper +--+ane, =0=w; =0,...,w, =0.
Therefore oy, ..., a, are linearly independent. <«

2. The mn matrices:

1 00 0 010 0 0 0 0 0
000 0 000 0 0 0 0 0
000 ---0 000 ---0 00 -~ 01

form a basis for K™*" as a K-vector space.

3. The functions coswz, sin wx form a basis for the solutions of the equa-
tion P
u 2
— F+wu=0 (w#0).
e (w #0)

4. The functions

2 n
e,z ... 2

form a basis for the subspace of C*°(R) consisting of polynomial func-
tions of degree < n.

5. dim K™ = n; dim K™" = mn. We have:

dim C™* — {mn as a complex vector space;

2mn as a real vector space.
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Given any linearly independent set of vectors we can add extra ones to
form a basis. Given any generating set of vectors we can discard some to
form a basis. More generally:

Theorem 1.2. Let M be a vector space with a finite generating set (or a
vector subspace of such a space). Let Z be a generating set, and let X be a
linearly independent subset of Z. Then M has a finite basis Y such that

XcYcz

Proof » Among all the linearly independent subsets of Z which contain X
there is one at least

Y = {uy, ..., u,},

with a maximal number of elements, n (say).
Now if z € Z then z,uq,...,u, are linearly dependent. Therefore there
exist scalars A, aq, ..., a, not all zero such that

Az +aqug + -+ au, = 0.

A # 0, since uy,...,u, are linearly independent. Therefore z is a linear
combination of uq, ..., u,.
But Z generates M. Therefore uq, ..., u, generate M. Therefore uy, ..., u,

form a basis for M. «
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Chapter 2

Linear Operators 1

2.1 The Definition

Definition. Let M, N be K-vector spaces. A map
MEIN
is called a linear operator (or linear map or linear function or linear trans-
formation or linear homomorphism) if
(i) T(x+y)=Tx+ Ty (group homomorphism);
(ii) Tax =aTx forall z,y € M, a € K.

A linear operator is called a (linear) isomorphism if T is bijective. We
say that M is isomorphic to N if there exists a linear isomorphism

M — N.
Note. Geometrically:
(i) means that T" preserves parallelograms (see Figure 2.1);

(ii) means that T" preserves collinearity (see Figure 2.2).

Xty

X
Ty
Tx+y) = Tx+Ty
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Figure 2.1

Figure 2.2
Ezxamples:
1. If
ol . al
A=(af) = : | eEm
ar’ oy’
we denote by
K" & K™



the linear operator given by matrix multiplication by A acting on ele-
ments of K™ written as n x 1 columns. Since

Az +vy) = Az + Ay,

Aax = aAx
for matrix multiplication, it follows that A is a linear operator.
E.g.
o 3 7 2 2%3
A= ( 9 5 1 ) eR
Now
a 3o+ 76 + 2y
3 2 .
R° — R* 15} H(—2&+55+7).
Y
2. Take J
—:C*R *(R).
o CT(R) — C*(R)
Now:
d d d
Slo(t) +y(0)) = lt) + ),
d d
%cx(t) = cax(t)

for all ¢ € R. Therefore % is a linear operator.

3. The Laplacian
o 8 a 8 . 0 3 0 3
A—8x2+8y2+822.C(R)—>C(R)

is a linear operator.
2.2 Basic Properties of Linear Operators
L. If M5 Nis a linear operator and uy,...,u, € M; ay,...,a, € K

then
T(oquy + -+ ou,) = agTug + -+ + . Ty,

T T
T § QU = § Uy,
i=1 i=1

i.e. T preserves linear combinations, i.e. T' can be moved across sum-
mations and scalars.

1.e.
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2. It M 23 N are linear operators, if uy, ..., u,, generate M, and if Su; =
Tu; (i=1,...,m) then S=T.

Proof of This > Let © € M. Then x = )", ayu; (say). Therefore

m m m m
St =25 E U, = g o;Su; = g a;Tu, =T E au; =T,
i=1 i=1 i=1 i=1

<

Thus two linear operators which agree on a generating set must be
equal.

3. Let uy,...,u, be a basis for M, and wy, ..., w, be arbitrary vectors in
N. Then we can define a linear operator

MEN

by

T(ajug + - 4 apuy) = aqwy + -+ + Q.

Thus T is the unique linear operator such that
Tu;=w; (i=1,...,m).
We say that T is defined by Tu; = w;, and extended to M by linearity.
Definition. Let M - N be a linear operator. Then
kerT'={z e M:Tx =0}
is a vector subspace of M, called the kernel of M, and
im7T ={Tz:z e M}

is a vector subspace of N, called the image of T. The dimension of im T is
called the rank of T,
rank 7' = dimim 7.
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2.3 Examples

1. Consider the matrix operator

A
K" > K™,
where A € K"™*",
11 12 ... O1p
A= :
Am1 Ao ... Oyp

(say).
kerT = {x = (z1,...,2,) : Az =0}

is the space of solutions of

11 ... 1p T 0

Ul - O T 0

i.e. The space of solutions of the m homogeneous linear equations in n
unknowns, whose coefficients are the rows of A:

1121 + Q12T9 + + + + + ATy = 0

Q1T + QpoXo + + + + + Qi Ty = 0

Q1T + Qoo + + - + QT = 0

Number of equations = m = number of rows of A = dim K™.

Number of unknowns = n = number of columns of A = dim K™.
We see that (z1,xs,...,x,) € ker A iff the dot product:
(i1, Qigy ooy i) (21, .y xy) (E=1,...,m)
with each row of A is zero. Therefore
ker A = (row A)*,

where row A is the vector subspace of K™ generated by the m rows of
A (see Figure 2.3).

Now row A is unchanged by the following elementary row operations:
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(i) multiplying a row by a non-zero echelon;
(ii) interchanging rows;

(iii) adding to one row a scalar multiple of another row.

So ker A is also unchanged by these operations.

To obtain a basis for row A, and from this a basis for ker A, carry out
elementary row operations in order to bring the matrix to row echelon
form (i.e. so that each row begins with more zeros than the previous
row).

FExample: Let

2 1 -1 3
A= -1 1 2 1 | :R*—=R?
4 0 —1 2
Now
2 1 -1 3
A~[0 3 3 5 frovgiziowi
0 -2 1 —4 o o
2 1 -1 3
~ 03 3 5 3row 3 + 2row 2.
00 9 -2

Since the new rows are in row echelon form they are linearly indepen-
dent. Therefore row A is 3-dimensional, with basis (2,1, —1, 3), (0, 3,3, 5),
(0,0,9,—2). Therefore

(o, B,7,0) €ker A= 2+ —v+30=0
36+3y+5)=0
9y —25=0
Sv=20
30=-3y—-5=-20—-56 =—44
20=—F+7—-36=40+326—-35=—5%5
& (a,8,7,0) = (—26,-14,25,6) = 2(—4,-17,2,9)

Therefore ker A is 1-dimensional, with basis (—4, —17,2,9).
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It

(€ S I € 4 B € S 1)
A Qo1 ... Qg ... Qogp c Kan
Om1 Oémj Umn
then
0
Q11 ... Q15 ... Qap
Qo1 ... Qg5 ... Qogp ) .
Ae; = ] . ] 1 — jth slot
A1 o Oy oo Oy 0
Qj
— . __ sth
= : = 7" column of A.
Qg
Therefore

imA={Az:x € K"}
={A(e; + -+ aney) T aq,...,a, € K}
={a1de; + -+ a,he, g, .., 0, € K}

= S(Aey,. .., Aey)
= column space of A
= col A,

where col A is the vector subspace of K™ generated by the n columns
of A.

To find a basis for im A = col A we carry out elementary column oper-
ations on A.

Example: If
2 1 -1 3
A=| -1 1 2 1
4 0 -1 2
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then

2 0 0 0 2col2 —coll
A~ -1 3 3 5 2col3 + coll
4 —4 2 -8 2col4d —3coll
2 000 col3 —2col2
~ b3 00 3col4 — 5col 2
4 —4 6 -4
2 0 0
~ -1 3 0
4 —4 6

—~ o O O

Therefore im A = col A has basis (2,—1,4), (0,3,—4), (0,0,6). There-

fore rank A = dimim A = 3.

2. Let p J
D = T :C®(R) - C*(R) (Dz(t) = @x(t))

(i) Let A € R and D — A be the operator
(D= ) = ot) = el
=S x(t).
Then

d
xEker(D—/\)(:)(D—)\)x:O(:)d—j:)\x(:)x(t):ce’\t.

Therefore ker(D — \) is 1-dimensional, with basis e’

(ii) To determine ker(D — \)* we must solve:
(D — N)Fz =0.
Put z(t) = e*y(t). Then

(D — Nax = Dx(t) — Axz(t)
= Ay (1) + N Dy(t) — ANy (t
= M Dy(t).

Therefore

(D — \)*z = eMD?y(t)

(D — \)Fx =MD y(t).
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Therefore
(D =Nz =0< MDMy(t) =0
& Dry(t) =0
S y(t) =co+ et +eot? + - Fcpyth !
& a(t) = (co+ et + -+ et e

Therefore ker(D—\)* is k-dimensional, with basis e*, teM t2eM, ... th=1eM,

2.4 Properties Continued

Theorem 2.1. Let M = N be a linear operator, where M is finite dimen-
sional. Let uy,...,uy be a basis for kerT', and let Twy, ..., Tw, be a basis
forimT. Then

Uty ooy U, W1y o ooy Wy
s a basis for M.
Proof » We have two things to show:

(i) Linear independence: Let

Zaiui + Zﬁjwj =0
Apply T
Therefore 3; = 0 for all j. Therefore a;; = 0 for all <.

Therefore uy, ..., ug, wy,...,w, are linearly independent.

(ii) Generate: Let x € M. Then

Tz = Z BiTw; (say).

Therefore
Therefore

Tle =) Bw,] =0.
Therefore

T — Zﬁjwj € kerT.

2-9



Therefore

T — Zﬁjwj = Z a;u;  (say).
Tr = Zaiui -+ Zﬁjwj.

Therefore uy, ..., ug, wy, ..., w, generate M. «

Therefore

Corollary 2.1. dimker T+ dimim 7T = dim M.
Corollary 2.2. If dim M = dim N then

T is injective < ker T = {0} < dimim T = dim N < T' is surjective.

2.5 Operator Algebra

If M, N are K-vector spaces, we denote by
L(M,N)
the set of all linear operators M — N, and we denote by
L(M)
the set of all linear operators M — M.
Theorem 2.2. We have:
(i) L(M,N) is a K-vector space, with

(S+T)x =Sz +Tx,
(aT)x = a(Tx)

forall S, T € L(M,N), z€ M, a € K.
(i) Composition of operators gives a multiplication

L(L,M)x L(M,N) — L(L,N)

T S
(T,S) +— ST } L=M=N,

with
(ST)x =S(Tx) forallz e L,

which satisfies

(o) (RS)T = R(ST),
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(b) R(S+T)= RS+ RT,
(¢) (R+S)T =RT + ST,
(d) (aS)T = a(ST) = S(aT),

provided each is well-defined.
Proof » Straight forward verification. «
Corollary 2.3. L(M) is
(i) a K-vector space: S+ T, aS;
(ii) a ring: S+T, ST;
(i11) (aS)T = «a(ST)=S(aT): «S, ST,
i.e. L(M) is a K-algebra.

2.6 Isomorphisms of L(M, N) with K™*"

Definition. Let uq,...,u, be a basis for M, and let wq,...,w,, be a basis
for N. Let M = N. Put Then we have:

1 2 j

Tu; = aywy + ajwy + - - - + Qjw; + - -+ + Q" Wy,
1 2 7 m

Tuj = ajwy + ajwy + - -+ ogw; + -+ + Wiy,

1 2 ;
Tu, = a,wy; + o wy + -+ -+ apw; + -+ -+ o Wy,

(say) where:

11 1 1
ap g ... a,
— 1) i ) i mxn
A=(@j)=| a5 ... ... o ... ap | €K™
m m m
P al

Note. The coordinates of Tu; form the j™ column of A - NOTE THE
TRANSPOSE! We call A the matrixz of T wrt the bases uq,...,u, for M

and wy, ..., w,, for N,
m
_ i,
Tuj = E QW
i=1
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Theorem 2.3. L(M,N) — K™ is a linear isomorphism where T — ma-
trix of T w.r.t. basis uy,- -+ ,Up;wy, cdots, wy,.

Proof » Let T have matrix A = (), and let S have matrix B = (f}). Then

(T+ S)u; =Tuj+ Su; = Za wl+Zﬁ’wl—Z a.+ﬁ§)wz
1=1

Therefore T' + S has matrix (o + 1) = A+ B. Also

(AD)uj = ATuy;) = /\Z ozé»wi = Z )\a;wi.
i=1 i=1

Therefore AT has matrix (Aa}) = AA. «
Corollary 2.4. dim £(M, N) = dim M.dim N.

Theorem 2.4. If L L M has matriz A = (o) wrt basis vy, ..., Vp, U1, . .., Un,

and M 2 N has matric B = (ﬂ]’) wrt basis Uy, ..., Un, W1, ..., Wy then

L L N has basis
(et -
k=1

(say), wrt basis vy, ..., Vp, W1, ..., Wn.

Proof »
(ST)v; = S(Tw;) = (Za uk> = iafSuk
k=1
DI IETED O T) ES ot
k=1 i=1 k=1 i=1

=1

<

Corollary 2.5. If dim M = n then each choice of basis uy,...,u, of M
defines an isomorphism of K-algebras:

L(M)— K™ : T matriz of T wrt uy, ..., u,.
Note. If M 5 M has matrix A = (o) wrt basis uy, ..., u, then
(i) Tu; = 27, a’uy, by definition;
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(ii) the elements of the j”* column of A are the coordinates of T'u;;
(iii) Aol + MT + X\oT? + -+ -+ X\, T" has matrix apl + A+ -+ + @, A”;
(iv) 7! has matrix A™!,

since we have an algebra isomorphism.

Theorem 2.5. Let M - N have matriz A = (o) wrt bases uy, ..., u, for
M and wy, ..., wy,y, for N. Let x have coordinates
51
X = (&)= :
fn
wrt uy, ..., u,. Then Tz has coordinates

AX = (i a§£j>
i=1

WIt W1, ...y Wiy
Proof »
SRR V3L EDEES 9 SED 91 ot 1
j=1 j=1 j=1 =1 i=1 \j=1

as required. <
Note. We have thus a commutative diagram:

M 15 N T

x — Tx
| | ! !
A z coord. 5 Tz coord

Kn Km
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Chapter 3

Changing Basis and Einstein
Convention

oy old new
Definition. If uy,...,u, and wy,...,w, are two bases for M then we have:

uy = pyw; + piwg + -+ + plw,
u;j :p}wl +p§w2 + o piwy

(say). Put
Pl D - Dy
2 2 2
. Py ... Di ... Do
P = (p}) : ’ :
pr ... p? N Vi

Note. The new coordinates of the old basis vector u; form the j column
of P-NOTE THE TRANSPOSE! We call P the transition matriz from the
(old) basis uy, . .., u, to the (new) basis wy, ..., wy:

n
u; = Wi
i=1

Theorem 3.1. If x has old coordinates
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then x has new coordinates
PX =) (&) = ()
j=1
(say).
Proof »

r = ijuj = ZﬁjZP}wi = Z (Zp§-§j> w; = Zniwi.
7j=1 7=1 =1 1 7=1 =1

1=

We shall often use the Einstein summation convention (s.c.) when deal-
ing with basis and coordinates in a fixed n-dimensional vector space M.
Repeated indices (one up, one down) are summed from 1 to n (contraction
of repeated indices). Non-repeated indices may take each value 1 to n.

Ezxample:
e o' denotes

Oél

(column matrix; upper index labels the row).

e «; denotes

(a1,...,ap) (row matrix; lower index labels the column).

° Oé;- denotes

al ... al
: (square matrix).
of ... oan
e u; denotes uyq, ..., u, (basis).

o o'u; denotes aluy + - - - + a"u,,.

e o'f; denotes a'fy + -+ - + "3, (dot product).
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e 3} denotes AB (matrix product).

Also

Tu; = o ¥

j “u; (o matrix of operator T')

and
uj = piw; (p; transition matrix from u; to w;).

If 2 has components &' wrt u; then Tz has components o¢" wrt u;. If 2 has
components &7 wrt u; then x has components pi&7 wrt w;.

° 5;'» denotes the unit matrix

1 0 0

0 1 0
I = )

0 0 1

e If @ = P~ then (¢}) denotes @ (inverse matrix) and
G} = 6 = pid)-

Theorem 3.2. Let M 5 N have matriz A wrt basis Uty ..., Uy,. Let P be
the transition matriz to (new) basis wy, ..., w,. Then T has (new) matriz
PAP™!

wrt Wy, ..., Wy.
Proof » Let P = (p}), A= (%), P7' =Q = (¢}). Then
Tuj = ozé»ui; u; = péwi; w; = q;uz
Therefore
Tw; = Tqyu = ¢;Tu = g,ojur = gia) prw; = pporq, w;,
——
PAP—1

as required. «
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Chapter 4

Linear Forms and Duality

4.1 Linear Forms

Definition. Fix M a K-vector space. A scalar valued linear function
f:M—-K

is called a linear form on M.

If f is a linear form on M, and x is a vector in M, we write

(f,x)

to denote the value of f on x. This notation has the advantage of treating f
and x in a symmetrised way:

() {fyw+y) = (F,2) + (F9),
(i) (f +g,2) = (f,2) + (g @),
(i) {af,2) = alf,z) = (f,ax),
() (X @il Sy By ) = 0y Sy il ().

If M is finite dimensional, with basis u1, ..., u,, then each x € M can be
written uniquely as

n
r=a'u + -+ a’u, = E a'u; = a'u;.
i=1

We write ' '
(u', )y = o
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to denote the " coordinate of x wrt basis u1, ..., u,. We have:

(u', x4+ y) = (u',z) + (u',y),

(u', ar) = alu’, x).

Thus v’ is a linear form on M, called the i** coordinate function wrt basis
Ui, ..., u,. We have:

ifi#j
2. x =Y (u',x)u; forall z € M;

L (u',u;) = { é o= } =0, (Kronecker delta);

3. (oqu' 4 - 4 au”, flug + -+ [up) = arft A+ = o

(dot product).
Theorem 4.1. Ifuy,...,u, is a basis for M then the coordinate functions
ul, ... u"™ form a basis for the space M* of linear forms on M (called the

dual space of M), called the dual basis, and
f= Z(f, u;)u'  for each f € M*.
i=1

Proof » We have to show that u!,..., u™ generate M, and are linearly inde-
pendent.

(i) Generate: Let f € M*; (f,u;) = (; (say). Then

<zﬁiuauj>:z@<uauj - = = (o
=1 =1

Therefore > | fiu* and f are linear forms on M which agree on the
basis vectors uq, ..., u,. Therefore

f= Zﬁzu —Z fruiu’

(ii) Linear independence: Let > | B;u’ = 0. Then

<i ﬁiui, Uj> =0
=1

4-2



for all j =1,...,n. Therefore

S =0
i=1

for all 7 = 1,...,n. Therefore 3; = 0 for all j = 1,...,n. Therefore

ul, ..., u™ are linearly independent. <

Corollary 4.1. dim M* = dim M.

Note. We denote by z, 1y, z the coordinate function on K3 wrt basis e, 2, €3,
and we denote by 2!, ..., 2" the coordinate function on K™ wrt basis e, . . ., €,.
These coordinates are called the usual coordinates.

4.2 Duality
Let M be finite dimensional, with dual space M*. If z € M and f € M*
then

(i) fis a linear form on M whose value on z is (f, x);

(ii) we identify z with the linear form on M* whose value on f is (f, z):

f:<fv'>7

x = (-, T).

What we are doing is identifying M with the dual of M*, by means of
the linear isomorphism:

M N M**
x— (-, x).
This is a linear map, and is bijective because:
(i) dim M** = dim M* = dim M,
(i) (vo) = 0 = (u',z) = 0forallz = = = 0. So the map is injective
(kernel = {0}), and hence by (i) surjective.
If uy,...,u, is a basis for M, and u',...,u" the dual basis for M* then
(u', uj) = 5;»
shows that u,, ..., u, is the basis dual to u', ..., u".
The identification of vectors x € M as linear forms on M* is called

duality. A basis u!, ..., u™ for M* is called a linear coordinate system on M,
and consists of coordinate functions wrt its dual basis uq, ..., u,.
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4.3 Systems of Linear Equations

Definition. If f!, ..., f* are linear forms on M then we consider the vector
subspace of M on which

Any vector in this subspace is called a solution of the equations (). Thus
x € M is a solution iff

(flz)=0,...,(f* z) =0.

The set of solutions is called the solution space of the system of k homoge-
neous equations (x). The dimension of the space S(f1, ..., f¥) generated by
f, ..., f¥is called the rank (number of linearly independent equations) of
the system of equations.

n

In particular, if u',...,u™ is a linear coordinate system on M then we

can write the equations as:

flz 11u1+..+ﬁiun:0

The coordinate map M* — K™ maps

fle= (B By)

ffe (8L By).

Thus it maps S(f*, ..., f¥) isomorphically onto the row space of B = ().
Therefore

rank of system = dimension of row space of B = dimrow B.

FExample: The equations

3v —4y +22=0,
20+ Ty + 32 =0,

where 2, y, z are the usual coordinates on R?, have

. 3 —4 2
rank—dlmrow<2 - 3)—2.
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Theorem 4.2. A system of k homogeneous linear equations of rank r on an
n-dimensional vector space M has a solution space of dimension n —r.

Proof » Let
f!=0,...,f" =0
be the system of equations. Let u!,...,u" be a basis for S(f!,..., f*). Ex-
tend to a basis u!, ... u", ", ... u" for M*. Let uy, ..., U, Upq1, ..., U, be
equations solutions

the dual basis of M. Then

r=a'u + -+ au, + O/HUTH + -+ a"u, € solution space
sal=@wr)=0,....,0a" =@, ,z)=0

1
So=ao M+ a .

Therefore wu,1,...,u, is a basis for the solution space. Therefore solution
space has dimension n — . <«

Theorem 4.3. Let B € K**", where K is a field. Then

dimrow B = dim col B (= rank B).

Proof » Consider the £k homogeneous linear equations on K" with coefficients

B = (8)):

11x1+...+ﬁ711x":0

fl»1+...+ﬁsx":0
Now

n — dimrow B = n — rank of equations
= dimension of solution space
= dim ker B
=n —dimim B

=n — dimcol B.

Therefore dim col B = dim row B. «



Chapter 5

Tensors

5.1 The Definition

Definition. Let M be a finite dimensional vector space over a field K, let
M* be the dual space, and let dim M = n. A tensor over M is a function of

the form
T:M x Myx---x M, — K,

where each M; = M or M* (i = 1,...,k), and which is linear in each variable
(multilinear).

Two tensors S,T are said to be of the same type if they are defined on
the same set M; X -+ X M.

FExample: A tensor of type
T:-MxM xM-—K

is a scalar valued function T'(x, f,y) of three variables (z a vector, f a linear
form, y a vector) such that
T(az+ By, f,2) =aT(z, f,z) + BT (y, f,z) linear in 1°* variable,
T(x,af + Bg,2) = aT(x, f,z) + fT(z,g,2) linear in 2" variable,
T(x, f,ay + B2) = aT(z, f,2) + BT(x, f,z)  linear in 3" variable.
If u; is a basis for M, and u’ is the dual basis for M* then the array of

n3 scalars
=T (us, w’, ug)

are called the components of T.
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If z, f,y have components &', n;, p* respectively then
T(x, f,y) = T usnpd?, phur) = Enip" T (wiy o, ug) = Emyptas
(using summation notation), i.e. the components of 7' contracted by the
components of z, f,y.

The set of all tensors over M of a given type form a K-vector space if we

define
(S+T)(x1,...,xr) =S(x1,...,2) +T(21, ..., 21),
AD) (z1y ..oy ag) = MT (2, - -, 2p))-
The vector space of all tensors of type
MxM xM—K
(say) has dimension n3, since T — T'(u;,u’,us) (components of T') maps it

isomorphically onto K "’

Definition. If S: My x --- x My, — K and T : My, X --- X M; — K are
tensors over M then we define their tensor product S ® T to be the tensor:

ST : My X+ X My X M4 X+ x M — K,

where
S ® T(xh s wxl) = S(xlu s 7xk>T('xk+17 s ,.Tl)-
Ezxample: If S has components a;’;, and T has components 37 then S ® T

has components o, 3", because
)

S @ T(us, u?,ug, u”,u®) = S(ug, v, up)T(u", u).

Tensors satisfy algebraic laws such as:
i) R¥(S+T)=R®S+R&T,
(ii)) (AR)®@S=ANR®S)=R®(\S),
(i) (R®S)@T=R®(SXT).

But
SRT#T®S

in general. To prove those we look at components wrt a basis, and note that
aijk(ﬁrs + f}/rs> = aijkﬁrs + Ofijkfyrsa
for example, but
o' # Fat

in general.
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5.2 Contraction

Definition. Let T : M7 x --- X M, X --- x My x --- x My — K be a tensor,
with
M,=M" My,=M

(say). Then we can contract the r'* index of T with the s index to get a
new tensor

omit omit

S M XXM, x- - X Mgx---xM,— K
defined by

’ yeeey U 7"'7'%‘]?72)7
rth slot sth slot

S(SEl, To, ... ,SL’k,Q) = T(SEl, Ce
where u; is a basis for M.
To show that S is well-defined we need:

Theorem 5.1. The definition of contraction is independent of the choice of
basts.

Proof » Put
R(f,x) =T(x1,20,. .., fy.o Tyt Th o).

Then if u;, w; are bases:
R(w',wi) = R(pi, qiur) = piai R(u®, w) = G.R(u", w) = R(u®, ),

as required. «

m

Ezample: If T has components a';;™ wrt basis u; then contraction of the

274 and 4™ indices gives a tensor with components
ﬁikm = T(ula Uj, Uk, U‘j7 uWL) = al_]kjm
Thus when we contract we eliminate one upper (contravariant) index and
one lower (covariant) index.
5.3 Examples
A vector x € M is a tensor:
M — K
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with components o’ = (u’, r) (one contravariant index).
A linear form f € M* is a tensor:

f:M—K

with components «; = (f,u;) (one covariant index).
A tensor with two covariant indices:

T: MxM— K,

with T'(u;, uj) = ayj, is called a bilinear form or scalar product.

Example: The dot product
K'x K" - K
((ala Soal), (ﬁl, ) e atpl 4 anpn

is a bilinej@r form on K™.
If M — M is a linear operator, we shall identify it with the tensor:

T - M"xM—K

by
T(f x)=(fTx).

This tensor has components
i i — i _ - ~
o'y =T(u',uj) = (u',Tu;) = matrix of linear operator T’
(one contravariant index, one covariant index).

Note (The Transformation Law). Let p’ be the transition matrix from

basis u; to basis w;, with inverse matrix qzj Let T be a tensor M x M*x M —
K (say). Then

new comps. old comps.

i T i, 8 At r,j .t s
T(wi7w 7wk) = T(q@ Urap;U 7Qkut) = szqu T(uruu 7ut>7

i.e. Upper indices contract with p, lower indices contract with g.
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5.4 Bases of Tensor Spaces

Let M x M* x M — K (*) (say) be a tensor with components «;7; wrt basis
u;. Then the tensor:
adput @u; @ub (%)

is of the same type as T', and has components

af it ® u; ® uk[ur, (TR aijk(ui, uy) (U, uj)(uk, Ug)
= cxijkéiéjéf

= arst~
Therefore (x%) has the same components as 7. Therefore
T = o/ u ® u; ® uk.

Therefore u' ® u; ® u” is a basis for the n*-dimensional space of all tensors
of type ().
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Chapter 6

Vector Fields

6.1 The Definition

Let V be an open subset of R”. Let z',...,2" be the usual coordinate

functions on R”. Let V -5 R. If a = (ay,...,a,) € V then we define the
partial derivative of f wrt it" variable at a:

of (a) = lim

a,’]j‘i t—0

flay,...;a;+t, ... a,) — flag, ... a4 ..., ap)

~lim fla+te;) — f(a)

t—0 t

d
= = fla+te)lg

(see Figure 6.1). If it exists for each a € V' then we have:

of
B :V — R.
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Figure : 6.1
Note that ,
ox'
o~
If all repeated partial derivatives of all orders:
af 0 0

Oz - Oxir  Oan “'8x”f:VHR

exist we call f C*°. We denote by C>°(V') the space of all C*° functions
V — R. C*(V) is an R-algebra:

1) (f +9)(@) = f(z) + g(x),
(i) (fg)(x) = f(x)g(x),
(iii) (af)(z) = a(f(z)).
Each sequence o', ...,a" of elements of C°°(V) defines a linear operator

v = ali +-+a”
0! oz
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on C*(V), where

(0h)(x) = o) ST (@) -+ (@) 2 (1),

Such an operator
v:C®(V) = C®(V)

is called a (contravariant) vector field on V.
Now for each fixed a we denote by

0

Oxt,

the operator given by:
0 of
&ng - Ox (@)

Thus 621- acts on any function f which is defined and C' on an open set

containing a. We define the linear combination Y | o Bii by

(al 9 +---+ani)f:alﬁ(a)+---+ "af (a)_

xi Dan Oz “ o

The set of linear combinations

{1a n
o'+t

1 n
o, ., a"€eR
ozl oz Y }

is called the tangent space to R™ at a, denoted T,R"™. Thus T,R" is a real
n-dimensional vector space, with basis

0 0

—1’...’ .
Ozl Oxn

o)

7
oz,

The operators are linearly independent, since

a1i+...+an a
oz} oxn

a

0 0 A A
:0:>(a1%+---+a"axn)x’:O:>a’:O,

since %(a) = 0.

Ifv=oals+- + a5l (o' € C®(V)) is a vector field on V' then we
have (see Figure 6.2), for each x € V' a tangent vector

0

T

v, = a'(x)

1
Ozl
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Figure 6.2

We call v, the value of v at x, and note that

Vo f = (ozl(x) 0 + -+ a”(z) 0 )f

Oxl oxn
= o)L (@) 4+ an(a) (o)
- (@)

for all x € V. Thus v is determined by its values {v, : * € V}, and vice
versa. Thus a contravariant vector field is a function on V'

T = Uy,

which maps to each point x € V' a tangent vector v, € T, R".

6.2 Velocity Vectors




Figure 6.3

Let B(t) = (B'(t),...,™(t)) be a sequence of real valued C*° functions
defined on an open subset of R. Thus 8= (3',...,4") is a curve in R" (see
Figure 6.3). If f is a C* real-valued function on an open set in R™ containing
B(t) then the rate of change of f along the curve g at parameter ¢ is

CIB0) = SFE W, )

8 0 d
8:{1 (5(t))dtﬁl(t) +-+ 6:6{1 (ﬁ(t))aﬁ"(t) (by the chain rule)
d 0 d . 0
= B,
where
0 . 0 .
L)

is called the welocity vector of 5 at t.
We note that if 3(¢) has coordinates

B(t) = 2*(B(1))
then 3(t) has components

C5() = o (5(0)

i d 9
= rate of change of x* along § at t wrt basma Pl By

In particular, if & = (a!,...,a") € R" and a = (a',...,a") € R" then the
straight line through a (see Figure 6.4) in the direction of «:

(a' +tat, ... a" +ta™)

t&
Figure 6.4
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has velocity vector at ¢t = 0:

0
+- 4 a"— € T,R".

1
o —
1

ozl Oxn

Thus each tangent vector is a velocity vector.

6.3 Differentials

Definition. If a € R", and f is a C* function on an open neighbourhood
of a then the differential of f at a, denoted

dfa,

is the linear form on 7T,R™ defined by

(dfa, 3(0)) = S F(3(0) = (D S

Figure 6.5

for any velocity vector 3(t), such that 5(t) = a.

Thus

(i) (dfsw).B(t)) = rate of change of f along (3 at t (see Figure 6.5),
(i) (dfs,v) =vf (for all v € T,R™) = rate of change of f along v.

Theorem 6.1. dz’, ..., daz" is the basis of T,R™ dual to the basis 5%, ey ain
for T,R™. ‘ ‘
Proof »

;0 Ox' ;
(et 57) = =3,

as required. «
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Definition. If V' is open in R™ then a covariant vector field w on V is a
function on V:
w:T— w, € T,R"™.

The covariant vector fields on V' can be added:
(W +n)e = ws + N,
and multiplied by elements of C*(V):
(fw)e = f(z)ws.
Each covariant vector field w on V' can be written uniquely as
wy = Pi(z)dzl + - -+ B (z)dx™.

Thus
w = Bdz + -+ Bpdx"

(we confine ourselves to ; € C*(V)).
If f € C°°(V) then the covariant vector field

df : x v df,
is called the differential of f. Thus we have:

e contravariant vector fields:

9, 0 A
= 1— .« e n_—- ? o .
v=aioy +F o o O e C=(V);

e covariant vector fields:
w=Fidxt + -+ B, dz", B € C>*(V);

and more general tensor fields, e.g.

S=a/Ldx'® E ®de®,  alp € C(V),

a function on V whose value at z is

Sy = ap(v)dz! ® ® dz¥,

)
a tensor over T,R".
We can add, multiply and contract tensor fields pointwise (carrying out

the operation at each point z € V). For example:
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(i

) (R+S): =R, + S;,
(i)

)

v)

R®S), =R, ®S,,

(iii) (contracted S), = contracted (S;),

(
(
(
(iv) (

[8)e = f(x)Sa [ e (V).

Contracting the covariant vector field w = fidz! + - - - + B,dz™ with the
contravariant vector field v = QI% +tasn ‘9 — gives the scalar field

<w7 U> = ﬁlal +-+ ﬁnan~
In particular, if f € C°°(V) has differential df then the scalar field
(df,v) =vf

is the rate of change of f along v.
If w= Bidxt + -+ B,dz"™ then

0
B; = i" component of w = <w, —> .
ox’

In particular:

i compoment of df = <

o\ _Of
ot/ Ort

Therefore

af of

d +---+ ——dz" Chain Rule,
ox™
of

0
rate of change of f = 8—fl.rate of change of 2! + -+ + 8—.rate of change of z".
4 ™

df =

6.4 Transformation Law

A sequence A
y="(....y") (' €C(V))

is called a (C'*°) coordinate system on V if

V-W
z—y(r) = (y'(2),. ... y"(z))
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maps V' homeomorphically onto an open set W in R", and if

where F'" € C°° ().

Figure 6.6

Ezxample: (r,0) is a C* coordinate system on {(z,y) : y or « > 0} (see Figure
6.6), where r = /22 4+ y2, 6 unique solution of x = rcosf,y = rsinf (—n <
0 <.

If a € V, and [ is the parametrised curve — the curve along which all
v’ (j # 1) are constant, and y° varies by ¢ — such that

y(B(1)) = y(a) + te;

'V
y
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Figure 6.7

(see Figure 6.7) then the velocity vector of 5 at t = 0 is denoted:

0

Ay,

Thus if f is C*° in a neighbourhood of a then
af
oy’

If we write f as a function of y!, ... y™

f:F(y17"'7yn)

(a) = 83 f= %f(ﬁ(t))\tzo = rate of change of f along the curve (3.

2
a

(say), then
0 d d d oF
(@) = GOm0 = ZFWOO)co = TP @ e = 52 (0la),
i.e. to calculate ngi (a) write f as a function F of y!,...,y", and calculate
9 (partial derivative of F' wrt " slot):

of  oF | "

Now if (3 is any parametrised curve at a, with 5(t) = a (see Figure 6.8),
then

(df, 4(1)) = 5 F(3(1)

= LR BO).... v (B0)
3 OF (0 (B0, (B0 (310)

S B0} 50

n
i=1
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a=8(1)
Figure 6.8
Therefore
df a = a y(ZI
; ay2< )
Therefore
daf = ’
2o
The operators
o 92
Oys' Oz

are linearly independent, since a(zi Y = 5; Therefore these operators form a
basis for T,R", with dual basis

dy;, o dyl,

0.) = %% (q) = 4.

since (dy’, 1) = oy
If 24, ..., 2" is a O coordinate system on W then on V N W:

dz’ _Zﬁyﬂ dy’.

is the transition matrix from basi

0 0z 0
oyl Z Ayl Dz

Z
dyd

Therefore a

on VNW.
If (say) g = gi;dy’ ® dy’ is a tensor field on V, with component g;; wrt
coordinates 1°, then

Ay dy 0y'3yﬂ
o () ()-8 nat o
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using s.c., and therefore g has component

Oy’ Oy’
0zk @gzj

wrt coordinates z*.

Example: On R™:
(i) usual coordinates z, y;
(ii) polar coordinates r, 6.

xr=rcosf, y=rsiné.

So
ox ox )
dr = Edr + %dﬁ =cosOdr —rsinfdo,
dy = %dr + %d@ =sinfdr + rcos 6 db.

The matrix
cosf) —rsinf
sinf  rcos@
is the transition matrix from r, 0 to z,y:

0 Oxrd 0Oyo 0 .
8r:56_x+56_y:mse%+smeay’

0 or 0 Oy 0 . .0
_ae:%a—x+%a—y:—7“81n€%+7“00806y.

6-12



Chapter 7

Scalar Products

7.1 The Definition

Definition. A tensor of type M x M — K is called a scalar product or
(bilinear form) (i.e. two lower indices).

FExample: The dot product K™ x K" — K. Writing X,Y as n x 1 columns:

((alv : ..,Oén), (ﬁlvuﬁn» = O‘lﬁl + e +anﬁn
(X,Y) — XY

7.2 Properties of Scalar Products

1. If (+|-) is a scalar product on M with components G = (g;;) wrt basis
u;, if x has components X = (¢') and y has components Y = ()
(9i5 = (uiluy) and (-|-) = giu’ ® w’) then

(zly) = (P'ws|v’uy)

= o' (ug|uy)

= gi; o'V

:(¢1 ¢n) guin .-+ Jin V!
Gnl -+ Gnn V"

= X'GY.

Note. The dot product has matrix I wrt e;, since e;.e; = 5;
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2. ItP= (pé) is the transition matrix to new basis w; then new matrix of

(-])) is Q*GQ, where Q = P71

Proof of This > As a tensor with two lower indices, new components

of (-|-) are:
@ dign = @' gud, = Q'GQ.
Check:
(PX)'Q'GQ(Y) = X'P'Q'GQY = X'GY.
<

3. (+]-) is called symmetric if
(zly) = (ylx)
for all z,y. This is equivalent to G being a symmetric matrix G* = G:
9ij = (wiluy) = (ujlui) = gji.

A symmetric scalar product defines an associated quadratic form

F:M—K
by
F(z) = (z[z)
= X'GX
:(51 fn) g1 .-+ Gin fl
= 9i;§'¢,
1.e.
F=(u' ...u) [ gun ... g ut \ = giju'l.
gn1 -+ Gnn u"

u'u? is a product of linear forms, and is a function:
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Example: If x,y, z are coordinate functions on M then

F:(xyz) 3 2 3 x
2 =7 -1 Y
3 —1 2 z

=327 — Ty? +22% + day + 622 — 2y2.

(Thus quadratic form = homogeneous 2"¢ degree polynomial).

The quadratic form F determines the symmetric scalar product (-|)
uniquely because:

(z +ylr +y) = (z]z) + (2|y) + (y|z) + (yly),
2(zly) = F(z +y) — F(z) = F(y) (if1+1#0),

and g;; = (u;|u;) are called the components of F wrt u,;.
Definition. (-|-) is called non-singular if

(zly)=0forally e M = x =0,

1.e.
X'GY =0forallY € K" = X =0,
1.e.
X'G=0= X =0,
1.e.

det G # 0.

Definition. A tensor field (-|-) with two lower indices on an open set V' C R™:
(1) = gisdy' ® dy’
(say), y* coordinates on V, is called a metric tensor if
(-[-)e
is a symmetric non-singular scalar product on T,R" for each x € V| i.e.
gij = g;i and det g;; nowhere zero.
The associated field ds? of quadratic forms:
ds* = gi;dy'dy’

is called the line-element associated with the metric tensor.
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Example: On R™ the usual metric tensor
dx ® dx + dy ® dy,

with line element ds? = (dz)? + (dy)?, has components

(07

wrt coordinates z, y.
If

then

(v|w) = (v ( ) ( g ) = v'w! +v*w?  (dot product)
ds?[v] = (v]v) = (v')* + (v

If r, 0 are polar coordinates:

)2 = ||v||* (Euclidean norm).

xr=rcosf, y=rsinb,
then

dx = cos@dr — rsinf db,
dy = sin @ dr + rcos 6 df

and
ds® = (dz)* + (dy)?
= (cos@dr —rsinfdh)? + (sin 6 dr + r cos 0 d)?
= (dr)? +r*(do)?

has components

wrt coordinates r, 6.
If

then
(v|w) = a'B" + r*a?p?,
o] = ()? + r?(a?)*.



7.3 Raising and Lowering Indices

Definition. Let M be a finite dimensional vector space with a fixed non-
singular symmetric scalar product (-|-). If x € M is a vector (one upper
index), we associate with it

e M,
a linear form (one lower index) defined by:

(Z,y) = (z|y) forally € M.

We call the operation

M — M*
T T
lowering the index. Thus
T = (z|) = ‘take scalar product with z'.

If x = o'u; has components o' then Z has components
aj = (T,u5) = (z|uy) = (a'uilu;) = o' (usluy) = ' gy;.
Since (+]-) is non-singular, g;; is invertible, with inverse g/ (say), and we have
o = aug".
Thus

M — M*

T
is a linear isomorphism, with inverse
f—1T
(say), called raising the indez. So
r=a'u; = f,
T=ou' = f

and

(zly) = (JN”Iy) = (f,y) = (2,y).
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To lower: contract with g;; (a; = a'g;;).
To raise: contract with ¢ (a? = a;g%).
Let M 5 M be a linear operator and (-|-) be symmetric. The matrix of
T is:
o'y = (u', Tuy),
one up, one down mixed components of T.
iy = (i Tuy),
two down covariant components of T.
ayj = (uila®jur) = (uilup)a®; = gina®;
(lower by contraction with g;;). Therefore
o, = g*ay,

(raise by contraction with g¥).
If we take the covariant components «;;, and raise the second index we
get
Oéij = aikgkj~

«;; are the components of the tensor B (two lower indices) defined by:
B(z,y) = («|Ty),

since

B(U,Z’,Uj) = (U2|T’u]) = Ozij.

;' are the components of an operator T* (one upper index, one lower
index) defined by:

(T"xly) = (|Ty),
since T™ has components
Yig = (il T u;) = (T"ujlus) = (u;]Tus) = agi,
and therefore T has mixed components:
Vij = gik'ij = ajkgki = Oéji-

T* is called the adjoint of operator T
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7.4 Orthogonality and Diagonal Matrix
Definition. If (-|-) is a scalar product on M and
(zly) =0,

we say that x is orthogonal to y wrt (-]-).
If N is a vector subspace of M, we write

Nt ={z e M: (z|ly) =0foralye N},

and call it the orthogonal complement of N wrt (-|) (see Figure 7.1).

NJ_

Figure 7.1
We denote by (+|-)n the scalar product on N defined by

(zly)ny = (z|y) forall z,y € N,

and call it the restriction of (+|-) to N.

Definition. Let Ny,..., Ny be vector subspaces of a vector space M. Then
we write

N1+-~+Nk:{:c1—|—~-~+xk:x1ENl,...,xkENk},

and call it the sum of Ny,..., Ny. Thus M = Ny +---+ N, iff each x € M
can be written as a sum

r=x1+ -4z, x; €N,
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We call M a direct sum of Ny,..., N, and write

if for each x € M there exists unique (x1,..., ;) (for example, see Figure
7.2) such that
r=x1+ --+x, and x; € N,.

Figure 7.2

Theorem 7.1. Let (:|-) be a scalar product on M. Let N be a finite-
dimensional vector subspace such that (-|-)n is non-singular. Then

M=N®oN~.
Proof » Let x € M (see Figure 7.3). Define f € N* by
(f.u) = (z[y)
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for all y € N.
Since (-|-)y is non-singular we can raise the index of f, and get a unique
vector z € N such that

(f,y) = (2ly)
for all y € N, i.e.

(zly) = (2[y)
for all y € N, i.e.

(z—z[y) =0
for all y € N, i.e.

r—z€ N,

Figure 7.3

i.e.

r=z +(x—2)
€N ent

uniquely, as required. <

Lemma 7.1. Let (-|-) be a symmetric scalar product, not identically zero on
a vector space M over a field K of characteristic # 2. (i.e. 1+1#0). Then
there exists x € M such that

(x|z) # 0.
Proof » Choose z,y € M such that (z|y) # 0. Then
(z +ylz +y) = (zlx) + (2[y) + (yl) + (y]y)-

Hence (x + y|x +y), (z|z), (y|y) are not all zero. Hence result. «
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Theorem 7.2. Let (-|-) be a symmetric scalar product on a finite-dimensional
vector space M. Then M has a basis of mutually orthogonal vectors:

(uilu;) =0 if i # j,

i.e. the scalar product has a diagonal matrix

(0%} 0 0
0 Qo ... 0
0 ... 0 ap

where o; = (u;|uy;).

Proof » Theorem holds if (z|y) = 0 for all z,y € M. So suppose (-|-) is not
identically zero.

Now we use induction on dim M. Theorem holds if dim M = 1. So assume
dim M = n > 1, and that the theorem holds for all spaces of dimension less
than n.

Choose u; € M such that

(U1|U1) = 7é 0.

Let N be the subspace generated by u;. (:|-)y has 1 x 1 matrix (ay), and
therefore is non-singular. Therefore

M=N@N-+
dm:n=1+n-—1.

By the induction hypothesis N+ has basis
Ugy ..., Uy

(say) of mutually orthogonal vectors. Therefore uy,us,...,u, is a basis for
M of mutually orthogonal vectors, as required. «

If M is a complex vector space, we can put

U

NG

w; =
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for each a; > 0. Then (w;|w;) = 1 or 0, and rearranging we have a basis wrt
which (-]-) has matrix

(r x r diagonal block top left), and the associated quadratic form is a sum

of squares:
(wl)Q R (wT)Q.
If M is a real vector space, we can put
ui/\/ozi o; > O,
w; = S u//—a; o <0

U; a; = 0.

Then (w;|w;) = %1 or 0, and rearranging we have a basis wrt which (-|-) has
matrix

1

0

and the associated quadratic form is a sum and difference of squares:

(w1)2 et (wr)2 o (wr+1>2 L (wr+3)2_

7-11



Ezxample: Let (-|-) be a scalar product on a 3-dimensional space M which
has matrix

4 2 2
A= 2 0 -1
2 -1 =3

wrt a basis with coordinate functions x, y, z.
To find new coordinate functions wrt which (-|-) has a diagonal matrix.
Method: Take the associated quadratic form

F = 42® — 32% + 4oy + 4oz — 2y,

and write it as a sum and difference of squares, by ‘completing squares’. We
have:

(
(x+3y+32)?—y*— 2% — 29z — 32" — 292
(
(

T+ %y + %Z)Q — (y2 +4yz + 42’2)
T+ Sy +12)° — (y+22)° + 027

4 0 0
D=0 -1 0
0 0 0

wrt to coordinate functions

u:x+%y+%z,

v =1+ 2z,
w=z.
The transition matrix is
L5 3
P=101 2
0 01
Check: P'DP = A?
100 4.0 0 13 3 4 2 2
110 0 -1 0 012 |=|2 0 -1
5 21 0 0 0 0 01 2 -1 -3
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For a symmetric scalar product on a real vector space the number of
+ signs, and the number of — signs, when the matrix is diagonalised, is
independent of the coordinates chosen:

Theorem 7.3 (Sylvester’s Law of Inertia). Letuy, ..., u, andwy, ..., w,
be bases for a real vector space, and let
F = (ul)Q et (ur)Q _ (ur+1)2 L (ur—i—s)Q
— (w1>2 4ot (wt)2 _ (wt+1)2 L (wt+k)2

be a quadratic form diagonalised by each of the two bases. Then r =t and

s =k.

Proof » Suppose r # t,r >t (say). The space of solutions of the n —r + ¢
homogeneous linear equations

Wt =0,... 4" =0,w'=0,...,0"=0
has dimension at least
n—mn—-r+t)=r—t>0.
Therefore there exists a non-zero solution z so

F(z) = (u'(2))*+ -+ (u"(z))* >0
= (@ ) — o= (@) <0,

which is clearly a contradiction. Therefore r = ¢, and similarly s = k. <

7.5 Special Spaces

Definition. A real vector space M with a symmetric scalar product (-|-) is
called a Fuclidean space if the associated quadratic form is positive definite,
ie.

F(z) = (z|z) >0 forall x # 0,

i.e. there exists basis uy, ..., u, such that (:|-) has matrix
1 0 ... 0
0o 1 ... 0
0 0 1

(all + signs).
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F= ()4 ("),

(uiluy) = 65,
ie. uy,...,u, is orthonormal.
We write
[z = V/(zlz) (z €M),
and call it the norm of x. We have

[z +yll < llzll + llyll - (Triangle Inequality).

Thus M is a normed vector space, and therefore a metric space, and therefore
a toplogical space.
The scalar product also satisfies:

|ly)] < ll=llllyll - (Schwarz Inequality).
We define the angle 6 between two non-zero vectors x,y by:

(z]y)
(Tl

=cosf (0<60<m)

(see Figure 7.4).

l_

-1

Figure 7.4

If M is an n-dimensional vector space with scalar product having an
orthonormal basis (e.g. a complex vector space or a Euclidean vector space)
then the transition matrix P from one orthonormal basis to another satisfies:

PIP=1,

new old
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1.e.
PP=1

i.e. P is an orthogonal matriz, i.e.

: 1 0 0

...ithcolofp... jth . 0 1 0
col : S

of P 0 ... 0 1

le.
(1™ col of P).(57 col of P) = 6,

i.e. the columns of P form an orthonormal basis of K™.
Also

P orthonormal < P'= P!
& PP =1
< the rows of P form an orthonormal basis of K".
Definition. A real 4-dimensional vector space M with scalar product (-|-)

of type + + +— is called a Minkowski space. A basis uy, us, us, uys is called a
Lorentz basis if wrt u; the scalar product has matrix

100 O
010 0
001 0 ’
000 -1

o F — (u1)2 + (U2)2 + (U3)2 _ (U4)2.

The transition matrix P from one Lorentz basis to another satisfies:

100 O 100 O

/1 01 0 O 1 0610 O
P 001 0 P= 001 0
000 -1 000 -1

Such a matrix P is called a Lorentz matriz.

Ezample: On C™ we define the hermitian dot product (x|y) of vectors

x:(al,...,an), y:(ﬁla"'aﬁn)
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to be B o
(zly) = 1B+ -+ - + @n .

This has the property of being positive definite, since:

(z]r) = @+ -+ iy = [laa||* + -+ |law]? >0 if 2 #0.

More generally:

Definition. If M is a complex vector space then a hermitian scalar product

(+|-) on M is a function
MxM—C

such that
(1) (= +ylz) = (l2) + (y]2),
(i) (az|z) = a(z]2),

(iif) (z]y + 2) = (z[y) + (z[2),
(iv) (zlay) = a(zly),

(v) (zly) = (ylo).

(i) and (ii) imply linear in the first variable, (iii) and (iv) imply conjugate-
linear in the second variable, (v) implies conjugate-symmetric.

If, in addition,
(z|z) >0

for all  # 0 then we call (-|-) a positive definite hermitian scalar product.

Definition. A complex vector space M with a positive definite hermitian
scalar product (-|-) is called a Hilbert space.

Note. For a finite dimensional complex space M with an hermitian form (-|-)
we can prove (in exactly the same way as for a real space with symmetric
scalar product):
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1. There exists basis wrt which (+|-) has matrix

1

2. The number of + signs and the number of — signs are each uniquely
determined by (-|).

3. M is a Hilbert space iff all the signs are +.

Thus M is a Hilbert space iff M has an orthonormal basis. The transition
matrix P from one orthonormal basis to another satisfies:

PP =1,
new old
i.e.
PP =1.

Such a matrix is called a unitary matriz.

A Hilbert space M is a normed space, hence a metric space, hence a
topological space if we define:

2]l = v/ (z]2).

To test how many +, — signs a quadratic form has we can use determi-
nants:

FExample:

ac —b? /2

b 2
F:ax2+2bxy+cy2:a<x+—y) +
a
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. . . . . . b
on a 2-dimensional space, with coordinate functions x, y and matrix ( Z . ) .

Therefore

+4+ & a>0, a b > 0,
b ¢

— &S a<0, @b > 0,
b ¢

+— & a b < 0.
b ¢

More generally:

Theorem 7.4 (Jacobi’s Theorem). Let I be a quadratic form on a real
vector space M, with symmetric matriz g;; wrt basis u;. Suppose each of the
determinants

gin - 1
A= :
g1 - Gi
is non-zero (i = 1,...,n). Then there exists a basis w; such that F has
matriz )
A7 A
Ag
An—l
An
i.€. 1 A A
F = — 12 _1 22 .. n—1 n\2
A ) 4 S )
Thus

F is +ve definite & A1, Ao, ..., A, all positive,
F is —ve definite < A1 < 0,A5 > 0,A3<0,....

Proofw F(z) = (z|x), where (-|-) is a symmetric scalar product, (u;|u;) = g5
Let
Ni = S(Ul, cee ,Ui).

(-|)n; is non-singular, since A; #0 fori =1,...,n.
Now

{0yc NyCcNyC---CN,;CN;,C---CN,=M.
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Therefore

Ni=Ni_1® (N;NN+)
dim:i=(i—1)+ 1.

Choose non-zero w; € N; N N;t,. Then
Wy ooy Wi—1, Wiy - -+, Wp

are mutually orthogonal, and w; is orthogonal to uy,...,u; 1. Therefore w;
is not orthogonal to w;, since (-|-) is non-singular. Therefore we can choose
w; such that (u;|w;) = 1.
It remains to show that
Ai
A

(wilw;) =
To do this we write
AUy + e ooy + Ay, = w;.
Taking scalar product with w;, uy, us, . .., u; we get:

Mg+ o+ A9+ Aigi =0
Aigo1 + - F Ai1g2,i—1 + Aigoi = 0

A1gic1q+ o+ Aic1gicio1 + Aigic1: =0
AMgin + o+ Aic1Gii-1 + Aigi = 1

Therefore
gin .- gni-1 O
gi-11 -+ Gi-15-1 0
g o G-l 1 AV
(wilw;) = X = = 17
gu .- Gg1i-1 gii A;
gi-11 --- Gi-1,i—-1 Gi-1:
g1 oo Gii-1 Gii

as requried. «

This has an application in Calculus:
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Theorem 7.5 (Criteria for local maxima or minima). Let f be a scalar
field on a manifold X such that dfx = 0, and let y* be coordinates on X at
a. Put

f f
3y12 o Aylayt
Ai = . :
an 82
dyioyl Dy2
Then
1. If Ai(a) > 0 fori = 1,...,n then there exists open nbd V of a such
that

f(x) > f(a) forallx eV, x#a,

i.e. a is a local minima of f;

2. If Ay(a) < 0,A5(a) > 0,A3(a) <O0,... then there exists open nbd V of
a such that
f(z) < f(a) forallx eV, z#a,

i.e. a is a local maxima of f.

To make sure that ||z|| = y/(z|x) is a norm on a Euclidean or a Hilbert
space we need to show that the triangle inequality holds.

Theorem 7.6. Let M be a Euclidean or a Hilbert space. Then

(1) [yl < =llllyll  Schwarz,

(i) |z +yl <zl + lyl|  Triangle.
Proof »

(i) Let x,y € M. Then

(ly) = (zly)le”,  (yla) = [(2ly)le™
(say). So for all A € R we have:
0< e ™z +ylhe ™z +y)

= [[2[PX* + Ae™ (z]y) + A (y|2) + Iyl
= [l2]I* + 2X[(z[y)] + llyl*

Therefore
[(z|y)? < lzlPllyll* (0* < dac).

Therefore
[(z|y)] < [lz|l]ly]l-
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Therefore

|z +ylI* = (z + ylz +y)
= [|z[|* + (zy) + (ylz) +
< ]| + 2l llyll + [ly)?
= (=l + lly D>,

[z +yll < llzll + vl
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Chapter 8

Linear Operators 2

8.1 Adjoints and Isometries

Let M be a finite dimensional vector space with a fixed non-singular sym-
metric or hermitian scalar product (|-). Recall that if

M5 M
is a linear operator then the adjoint of T is the operator
ME M,

which satisfies
(z|Ty) = (T"zly)

for all x,y € M.
If (-|-) has matrix G wrt basis u; and 7" has matrix A then 7™ has matrix

A* =G TA'G  (G7'A'G in hermitian case)

because
X'GAY = X'GAG™'GY = [G'A'GX]'GY,

and similarly

X'GAY = X'GAG™'GY = [G TAIGX]'GY.
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Examples:

1. M Euclidean, basis orthonormal:
A = A

2. M Hilbert, basis orthonormal:

A=A
3. M Minkowski, basis Lorentz:
1 00 O 100
« | 010 O .1 010
A= 001 0 A 0 01
000 —1 000

o O O

—1

Definition. An operator M L M is called an isometry if

(Tz|Ty) = (x|y) for all z,y € M,

i.e. T preserves (-|-), i.e.
(T"T'zly) = («[y),

ie.

T =1,
i.e.

T =T""
Ezxamples:

1. M Euclidean, basis orthonormal, A matrix of 7"
T is an isometry < A'A = I,
i.e. A is an orthogonal matrix.

2. M Hilbert, basis orthonormal, A matrix of 7"
T is an isometry < A'A= I,

i.e. A is a unitary matrix.

82



3. M Minkowski, basis Lorentz, A matrix of T":
T is an isometry < GA'GA =1 & A'GA = G,
i.e. Ais a Lorentz matrix.

Definition. An isometry of a Euclidean space is called an orthogonal trans-
formation. An isometry of a Hilbert space is called a unitary transformation.
An isometry of a Minkowski space is called a Lorentz transformation.

Definition. An operator M L, M is called self-adjoint if
T =T,
ie.
(Tx|y) = (z|Ty) for all x,y € M,
Le.
(il Tu;) = (Twiluz) = (u|Tus),
i.e. covariant components of T are symmetric.

(In quantum mechanics physical quantities are always represented by self-
adjoint operators).

Ezxamples:
1. M Euclidean, basis orthonormal, A matrix of 7"
T is self-adjoint < A = A,
i.e. A is symmetric.
2. M Hilbert, basis orthonormal, A matrix of 7"
T is self-adjoint < A= A,
i.e. A is hermitian.
3. M Minkowski, basis Lorentz, A matrix of 7"
T is self-adjoint & GA'G = A.

Summary: Let M L, M have matrix A wrt orthonormal or Lorentz basis.
Then:

Space: Euclidean Hilbert Minkowski

Matrix of T™: Al A GA'G

T self-adjoint: At=A A=A |Gac=4
A symmetric | A Hermitian

T an isometry: AtA=1 AA=1 |AGA=G
A orthogonal | A unitary | A Lorentz

8-3



8.2 Eigenvalues and Eigenvectors

Definition. A vector space N C M is called invariant under a linear oper-

ator M 5 M if
T(N) C N,

ie.xe N=Tx e N.
A non-zero vector in a 1-dimensional invariant subspace under 7T is called
an eigenvector of 7"

(i) x € M is called an eigenvector of T, with eigenvalue \ if

(a) z #0,
(b) Tax = Az, where X is a scalar (see Figure 8.1);

Tx=

Figure 8.1
(ii)) A € K is called an eigenvalue of T if there exists z # 0 such that
Tr = Az,

i.e.
(T — M)z =0,

i.e.

ker(T"— A1) # {0}.

ker(T'— A1) ={z € M : Tz = Az}

is called the A-eigenspace of T. It is the vector subspace consisting of all
eigenvectors of T having eigenvalue A, together with the zero vector.

84



Definition. If M = M is a linear operator on a vector space of finite di-
mension n, with matrix A = (oz;) wrt basis u;, then the polynomial of degree
n with coefficients in K:

char T = det

is called the characteristic polynomial of T'.

char T" is well-defined, independent of choice of basis u;, since if B is the
matrix of T" wrt another basis then

B=PAP™".
Therefore

det(B — XI) = det(PAP™" — X1I)
=det P(A— XI)P!
= det Pdet(A — XI)det P!
= det(A — X1I),

since det Pdet P! = det PP~ ! =det I = 1.

Theorem 8.1. If M L M s a linear operator and dim M < oo and A € K
then

A is an eigenvalue of T < X is a zero of charT.
Proof » Let T have matrix A wrt basis u;. Then

A is an eigenvalue of T' < there exists y € M such that (T'— A1)y =0
< there exists Y € K" such that (A —AI)Y =0
& det(A—A) =0
< \is a zero of det(A— X1).

<

Corollary 8.1. If T is a linear operator on a finite dimensional complex
space then T has an eigenvalue, and therefore eigenvectors.
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Theorem 8.2. Let M = M be a linear operator on a finite dimensional
vector space M. Then T has a diagonal matriz

A
An
wrt a basis uy, ..., u, iff u; s an eigenvector of T, with eigenvalue \;, for
1=1,...,n.
Proof »

TU1:A1U1+OU2—|—"'+O’ZJ,”
TU2:0U1+)\2U2+"‘+Oun

Tu, = 0uy + Oug + « - + AUy,
hence result. «

Theorem 8.3. Let M = M ba a self-adjoint operator on a Hilbert space M.
Then all the eigenvalues of T are real.

Proof w Let Tx = Az, x #0, A € C. Then
MNz|z) = (\o|z) = (Tz|z) = (2|T2) = (2| ) = N(z|z).
(z|z) # 0. Therefore A = X. Therefore ) is real. «

Corollary 8.2. Let A ba a hermitian matriz. Then C" A Crisa self-
adjoint operator wrt hermitian dot product. Therefore all the roots of the
equation

det(A— XI)=0

are real.

Corollary 8.3. Let T be a self-adjoint operator on a finite dimensional Eu-
clidean space. Then T has an eigenvector.

Proof » Wrt an orthonormal basis T has a real symmetric matrix A:
A=A =A

Therefore A is hermitian. Therefore det(A — X 1) = 0 has real roots. There-
fore T' has an eigenvalue. Therefore T" has eigenvectors. «
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Theorem 8.4. Let N be invariant under a linear operator M L M. Then
N* s invariant under T*.

Proof » Let x € N*+. Then for all y € N we have:
(T"zly) = (z|Ty) = 0.
Therefore T*x € N*. <«
Definition. M 5 M is a normal operator if
™T=TT",
i.e. T commutes with 7.

Ezxamples:
(i) T self-adjoint = T" normal.
(ii) T an isometry = T normal.

Theorem 8.5. Let S, T be commuting linear operators M — M (ST =T'S).
Then each eigenspace of S s invariant under T

Proof »
Sz =X x = S(Tz) =T(Sz) =T(\x) = \NTx),

i.e. x € M\-eigenspace of S = Tz € A-eigenspace of S. «

8.3 Spectral Theorem and Applications

Theorem 8.6 (Spectral theorem). Let M L M be either a self-adjoint
operator on a finite dimensional Euclidean space or a mormal operator on
a finite dimensional Hilbert space. Then M has an orthonormal basis of
ergenvectors of T.

Proof » (By induction on dim M). True for dim M = 1. Let dim M = n,
and assume the theorem holds for spaces of dimension < n — 1.

Let A be an eigenvalue of T', M), the A-eigenspace. (+|-)as, is non-singular,
since (+|-) is positive definite. Therefore

M = M, & Mj.
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M, is T-invariant. Therefore Mj- is T*-invariant. 7* commutes with 7.
Therefore M, is T*-invariant. Therefore M;- is T-invariant.
Now

(T"zly) = («[Ty)
for all z,y € M;-. Therefore (T*) ;- is the adjoint of T/.. Therefore

T self-adjoint = Ty is self-adjoint,

and
T normal = TM/\L is normal.

But dim My < n — 1. Therefore, by induction hypothesis M;- has an
orthonormal basis of eigenvectors of T. Therefore M = M, @ M;- has an
orthonormal basis of eigenvectors of T'. <

Applications:

1. Let A be a real symmetric n x n matrix. Then

(i) R™ has an orthonormal basis of eigenvectors uy, . .., u, of A, with
eigenvalues Ay, ..., A, (say),
(i) if P is the matrix having wuy, ..., u, as rows then P is an orthog-

onal matrix and

A0 ... 0

B 0 X ... 0 t
PAP ' = | T | = @A,

where Q = P71

Proof » R" is a Euclidean space wrt the dot product, e, ..., e, is an
orthonormal basis. Operator R 4 R has symmetric matrix A wrt
orthonormal basis ey, ..., e,. Therefore A is self-adjoint. Therefore R"
has an orthonormal basis uy, ..., u,, with eigenvalues Ay, ..., \,.

Let P be the transition matrix from orthonormal ey, . . ., e, to orthonor-
mal uq, ..., u,, with inverse matrix ). P is an orthogonal matrix, and
therefore

Q=rprP'=P.
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@ is the transition matrix from u; to e;. Therefore

u;=qer+ -+ qen = (45, .., q})
= 5" column of Q

= j" row of P.

Matrix of operator A wrt basis u; is:

MO .0

o ... 0

PAP™' = PAP! = SR
0 ... 0 X\

<

. (Principal axes theorem) Let F' be a quadratic form on a finite
dimensional Euclidean space M. Then M has an orthonormal basis
Uy, - . ., Uy which diagonalises F':

F=Xu)?+- 4+ N\ (u™)
Such a basis is called a set of principal axes for F.

Proofw F(x) = B(x,z), where B is a symmetric bilinear form. Raising
an index of B gives a self-adjoint operator T"

(z|Ty) = B(z,y) = (Txy).

Let uy,...,u, be an orthonormal basis of M of eigenvectors of T', with
eigenvalues A1,..., A, (say). Then wrt u; the quadratic form F' has
matrix: '
B(ug, uj) = (ui| Tuy) = (wil \juy) = A;05,

ie.

A0 0

0 X 0

0 0 A,

as required. «

Note. If F' has matrix A = («a;;), and (+|-) has matrix G = (g;;) then
T has matrix ' '
(') = (g% aw;) = GT'A.
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Therefore \q, ..., A, are the roots of
det(G'A - XI)=0,
Le.
det(A — XG) =0.
. Consider the surface
az® + by* + c2* + 2hay + 292z +2fyz =k (k> 0)
in R3. The LHS is a quadratic form with matrix

a h g
A=\ h b f
g [ c
wrt usual coordinate functions x,y, z. By the principal axes theorem

we can choose new orthonormal coordinates X, Y, Z such that equation

becomes:
MXZ 4+ NY2+ 322 =k,

where A1, Ao, A3 are eigenvalues of A.

The surface is:

an ellipsoid if A\, Ao, A3 are all > 0, i.e. if the quadratic form is
positive definite, i.e.

a>0, ab—h?>>0, det A>0 by Jacobi;

a hyperboloid of 1-sheet (see Figure 8.2) if the quadratic form is
of type + + — (e.g. X?+Y?2=27%2+1), ie.

a>0,ab—h?>>0, det A <0
or a>0, ab—h?><0, det A <0
or a <0, ab—h%<0, det A< O0;



Figure 8.2

a hyperboloid of 2-sheets (see Figure 8.3) if the quadratic form is
of type + — — (e.g. X?2+Y?2=272-1), ie.

a>0,ab—h?><0, det A >0
or a<0, ab—h?><0, detA>0
or a <0, ab—h?®>0, det A> 0.



Figure 8.3



Chapter 9

Skew-Symmetric Tensors and
Wedge Product

9.1 Skew-Symmetric Tensors
Definition. A bijective map
o:{1,2,....r} —={1,2,...,r}

is called a permutation of degree r. The group &, of all permutations of
degree r is called the symmetric group of degree r. Thus S, is a group of
order r!.

Let 7" M denote the space of all tensors over M of type
MxMx---xM-— K.
Thus 7" M consists of all tensors T' with components

T(wiyy . u;,) =y 4. (r lower indices),

T=0o; ;u"Q --Qu".
1 T

u ® -+ ®@u' is a basis for 7M.
For each o € §,, and each T' € 7"M we define 0.7 € 7"M by:

(J.T)(:Cl, ce ,:CT) = T(]}o(l), Ce ,:CU(T)).

If T has components «;, ;. then ¢.T has components (3;, ;. , where

ﬁi1~~~ir = (U-T>(ui17 Ce ,’U,Z'T) = T(uia(l), Ce ,’U,Z'J(T)) = Qig(l) Ce Oéig(r).
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Theorem 9.1. The group S, acts on T"M by linear transformations, i.e.
(i) o.(aT + BS) = a(a.T) + [(0.9),
(ii) o.(1.T) = (o7).T,
(i) 1.7 =T
forala,feK, o,TreS,, SSTeT M.
Proof » e.g. (i)
lo.(1.D)) (@1, ... 20) = (T.1) @01y, - - - s To(r)]

=T (ZTo(r)); - - -+ To(r(r)))
= [(o7).T](21, ..., 2).

Therefore o.(7.7) = (o7).T. <
Note. If 0 € S,, we put

- +1 if ¢ is an even permutation; .
- { —1 if o is an odd permutation } = sign of 0.
We have:
(i) €T = %€,
(i) €' =1,

(i) € = €.
Definition. 7' € 7" M is skew-symmetric if
oT =¢eT foralloes,,

i.e.
T(.To(l), e ,:L’U(r)) = GUT(.Tl, e ,:L’r)

forall o € S, x1,...,2, € M, i.e. the components «;, ;. of T satisfy:

Qi 1yeipry — €7 iy iy -
Ezample: T € T?M, with components ajy, is skew-symmetric iff
Qi = — Ok = Qg = —Oj; = Oy = — Q-
It follows that if 7" is skew-symmetric, with components «;, ;. (from now
on assume K has characteristic zero, i.e. @« #0 = a+a+---+a # 0) then
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1. ay, 4, =0if ¢1,...,7, are not all distinct;

2. if we know «y, ;. for all increasing sequences iy < --- < 1, then we
know «y, ;. for all sequences iy, ..., 1i,;

3. if T'is skew-symmetric, with components «;, . ;, and S is skew-symmetric,
with components 3;, ; , and if oy, ;. = (.., for all increasing se-
quences i < --- < 1, then T'= 5.

Theorem 9.2. Let T € T"M. Then
Z o T
UGST

1s skew-symmetric.

Proof » Let 7 € S,.. Then
T. (Z e"a.T) =€’ Z € (ro).T =€ Z e’ (0.T),
UGST UGST UGST
as required. «

Definition. The linear operator
A:T"M —-T™M

defined by
1 g
AT == F E o T

oES,

is called the skew-symmetriser.

Example: Let T € T3M have components a;j,. Then

AT (z,y,2) =

%[T<x7y72) - T(y,(l?,Z) + T(y7 Z,l’) - T(:C,Z,y) + T(Z,;U,y) - T(Z,y,ﬂ?)],

and AT has components

1
Bijk = g(aijk — Qg + Qi — Qi + Qij — Qi)
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Theorem 9.3. Let S € T*M, T € T'M. Then
(i) A[(AS)® T] = A[S @ T] = A[S ® AT],
(ii) A(S®T) = (—1)*A(T ® S).

Proof »

(i) We first note that if 7 € S, then

[(7.9) @ T (w1, .oy sy, Tsy1s oy Tsgt) = (T.S) (@1, oo, ) T (Tsi1y - vy Tspt)
= S(ZL‘T(l), .. $T(S))T(ZL‘S+1, .. l‘S_H)
:S(x’r’(l)w- s)) (xr’(s—‘rl x’r’(s—&—t))
= [T'.(S@T)](xl, e Ty Tgq 1y ey Togt)s
where
;o 1 ... s s4+1 ... s+t
= (1) ... 7(s) s+1 ... s+t )’
Thus

(7.9)@T=7.(S52T)
and € = ¢".

Now

A[(AS)®T] = T > e [( }:ers)

U€55+t TESS
S,Z gl 2 <) (58T
UGSS-H
:§§:Aw®T)
TESS
= A(S®T).
(ii) Let
. 1 S s+1 ... s+t
S\ t+1 . t+s 1 Lt

so that €” = (—1)*. Then

[T(S ®T>](SC1, ey Ly Lgy 1y - - - 7.T3+t) = S® T[SEt+17 ey Lpgsy Ly e - - 73725]
= T(xl,...,:Et)S(le,...st)
— (T ® S, ..., 2104).
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Therefore
7.(SeT)=T®S.
Therefore
1
(s+1)!
1
=€ —-0 Z 0. (T®S)

(S + t)‘ 0ESsyt
— (C)*AT® S),

AS®T) =

Z "ot (T ® S)

0ESs+t

as required. <

9.2 Wedge Product

Definition. If S € 7°M and T € T'M, we define their wedge product (also
called exterior product) by

(s +1)!
slt!

1
SAT = Y €o(SeT)= AS®T).

€S+t

Example: Let S, T € M* have components «;, 3; wrt u;. Then
SANT=5T-T®S.

Therefore
SAT[z,y] = S(x)T(y) — T(x)S(y),

and S AT has components

Yij = S A Tug, us] = S(ui)T(uy) — T(u;)S(uy) = aiffy — Bioy.

Theorem 9.4. The wedge product has the following properties:
1. (R+S)ANT=RANT+SAT,
2. RAN(S+T)=RAS+RAT,
3. (AR)ANS =ARAS)=RA(NS),
4. RAN(SAT)=(RAS)AT,
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5. SAT = (=1)%TAS,

6. Rl/\.../\Rk:MA(RI@)...@Rk)_

ril..rg!

(1), (i) and (iii) imply bilinear; (iv) implies associative; (v) implies graded
commutative.

Proof » e.g. 4.
(RAS)AT = “’é:j;ﬁ @;;)! (AR®S) T
- %A(R ©S®T)
" RA(SAT).
5.
SAT = <3;!’5)!/1(5 ST) = (—1)" <t;r;>!A(T 2 8) = (—1)"T A S.

6. By induction on k: true for k = 1, assume true for £ — 1. Then:

(Rl/\"'/\kal)/\Rk
(Tl+"'+rk—1+rk)! Tl+"‘+rk—1)!

= R Ra R
(7’14_..._’_7%71)!7»]?! A TI!---kall A<<R1® & 1)® k)
Fo )]
= (Tl Tk) A[R1®®Rk]
il

|
Note. For each integer » > 0 we write

M) for the space of all skew-symmetric tensors of type

Mx---xM— K;

M,y for the space of all skew-symmetric tensors of type

M*x---x M*— K,

—7r—

MO = K = M.
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If SeM® orSe My, we say that S has degree s, and we have
SAT = (=1)"TAS ifs=degS, t=degT.
Thus
1. SAT =T NS if either s or T has even degree;
2. SAT =—-T A S if both S and T have odd degree;
3. SAS=0if S has odd degree, since SAS =—-5AS;

4. TINTGoN - ANSA---ANSA---ANTp=0if S has odd degree;

5. If q,...,2. € M and iy,...,i, are selected from {1,2,... 7} then

Tig N Ny, = €5y 45,81 N T N N Xy,

where

1 iféy,...,%, is an even permutation of 1,... r;
€y.i, =< —1 if 4y, ... 4, is an odd permutation of 1,...,7;
0  otherwise

is called a permutation symbol;

6. If z; = aly;, (o)) = A€ K™ then

zi A Az = () A A (e
=af' ..oy, N A Y,
= GilmirOélll .. .Oé:,r Y1 AR /\yr
= (det A)ys A -+ Ay,

Theorem 9.5. Let M be n-dimensional, with basis uy,...,u,. Then
(i) if r > n then M™ = {0},
(ii) if 1 <r <n then

n!

dimmM) = —
o rl(n —r)!’

and {u™ A -+ AU}, oy, is a basis for MU,

Proof »
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(1)

(i)

Ifr>nand T € M) has components a;, ;. then the indices iy, ..., 1,
cannot be distinct. Therefore T' = 0.

i\ La=g5 | _
<u,uj>—{0 i }_5j'

We have

More generally:

wrA AU gy, ]
— 0,11 i . .
= E U R Qu [u]m),...,uja(r)]

O'ES’I‘
— o i1 ir
= g € 5jo<1) .. '5j<7(7")

oES,

1 if 71, ...,1, are distinct and an even permutation of ji, ..., j;

=< —1 ifey,..., 12, are distinct and an odd permutation of ji,..., j.;

0 otherwise

= oo (general Kronecker delta).

It follows that if 1 < r < n, and if T € M) has components a;, ;.
then the tensor:

(*) Z ailmuu“ FANKIIIVAN Uir

i <<y

has components

. g1 e ir . ] — ) oSt )
Z Qi WA AU UG U] = E Qi 0 ndn

1 <<l 1 < <ip
= ajl---jr’
provided j; < --- < j.. Therefore (%) has the same components as 7.
Therefore

(**) {uil FANKIIIVAN uir}z‘1<...<iT

generate M), Also
(*) =0= . G = 0.

Therefore (#x) are linearly independent. Therefore (xx) form a basis
for M™). <
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Chapter 10

Classification of Linear
Operators

10.1 Hamilton-Cayley and Primary Decom-
position

Let M = M be a linear operator on a vector space M over a field K.
Let K[X] be the ring of polynomials in X with coefficients in K. If p =
ag+ a1 X +asX?+ -+, X", write

p(T) = ool + onT + ayT? 4 -+ + o, T" € L(M).

Theorem 10.1 (Hamilton-Cayley). Let T € L(M) have characteristic
polynomial p, and let dim M < co. Then p(T) = 0.

Proof » Let T have matrix o wrt basis u;. Put P = (p}), where p} =
aj — X0;. Then P is an n x n matrix of polynomials, and det P = p is the
characteristic polynomial.

Let qji- = (=1)""7 times the determinant of the matrix got from P by
removing the i column and j** row. Then Q = (q;) is also an n X n matrix
of polynomials, and

PQ = (det P)I,
ie.
Pd) = po;

Therefore

p(T)u; = p(T)8%u; = pj(T) g} (T)u,
= ¢5(T)[og, — TSJu; = ¢5(T)[oju; — Tug) = 0
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Therefore p(T') = 0, as required. «

Ezxample: < (;é g ) ' R? — R2.

a—X I}
y 0—X

‘:XQ—(a—l—é)X—i—aé—ﬁfy.

Therefore

(5 0)=(03) oo (73] resm (o 1)
:(88).

Theorem 10.2 (Primary Decomposition Theorem). Let T € L(M),
and let
(T =XM1 .. (T = X\1)™ =0,

where Ai,...,\p are distinct scalars, and ry,...,r, are positive integers.
Then
M=M®:- &M,

where M; = ker(T — N\ 1) fori=1,... k.

Proof » Let
=X =X)" (X =)',
gi = (X - Ai)ma
[ = gih;

(say), so f(T) =0 and M; = ker g;(T).
Now hyq,..., h; have hef 1. Therefore there exist

@1,...,@k€K[X]

such that
Oihy+ - +0ih, =1.

(i) PL+---+ P, = 1. Also:
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(ii) for each x € M,
9:(T) Pz = gi(T)O;(T)hi(T)x = f(T)0;(T)z = 0.
Therefore P,z € M;,
(iii) if x; € M; and j # ¢ then
Piz; = 0;(T)h;(T)x; =0,
since g, is a factor of h;, and ¢,(T)z; = 0.
Thus

1. for each x € M we have

r=1lr=Pax+ -+ P, PFPuxelM;

2. if x =z + -+ - + x, with z; € M;, then (for example, see Figure 10.1)

Therefore x; is uniquely determined by x. Therefore

M:MIEBEBMkH
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Figure 10.1

as required. «

Note. Each subspace M; is invariant under 7', since

reM = g(T)xr=0

= g(T) Tz =0

Therefore, if we take bases for My, ..., My, and put them together to get a
basis for M, then wrt this basis T has matrix

Ay 0
Ay
0 Ay
where A; is the matrix of T}y, the restriction of T to M;.

Note also that
(Th, — Nil)" = 0.
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Example: Let M L MandT?=T (T a projection operator). Then
T(T—-1)=0.
Therefore, by primary decomposition,

M=%ker(T—1) @ kerT

= l-eigenspace @ 0-eigenspace.

If T has rank r, and uq,...,u, is basis of l-eigenspace; u,;1,..., U, is
basis of 0-eigenspace then, wrt uq,...,u, T has matrix

1 ... 0

T 0

0 ... 1 I 0
o ..ol ( 00 ) '

0 . . E

0 .0

10.2 Diagonalisable Operators

Let M 5 M; dim M < oco. Then:

(T —M1)...(T—X1)=0 (Ay,..., A\ distinct)

=M=ker(T—M1)®---@® (T — A1) by Primary Decomposition

= M = (\j-eigenspace) & - - - & (\,-eigenspace)

= T has a diagonal matrix wrt some basis of M

= M has basis consisting of eigenvectors of T'; and (T"— A1) ... (T — A\ 1)u=0
for each eigenvector u, where \q, ..., Ay are the distinct eigenvalues of T’

= (T —M1)...(T—=X1)=0 (Aq,..., A\ distinct).

Definition. A linear operator 7" with any one (and hence all) of the above
properties is called diagonalisable.

1 0 T2 2
<1 1).R — R
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is not diagonalisable.

Proof of This > The characteristic polynomial is

'1_1X 1—OX ':(I_X)2'

Therefore 1 is the only eigenvalue.

Also
(o, B) € 1-eigenspace < ( i (1] ) < g ) _ ( g )

Therefore 1-eigenspace = {3(0,1) : 3 € R} is 1-dimensional. Therefore R?
0

does not have a basis of eigenvectors of ( 1 L)<

Theorem 10.3. Let S,T € L(M) be diagonalisable (dim M < oo). Then
there ezists a basis wrt which both S and T have diagonal matrices (S, T
simultaneously diagonalisable) iff ST =TS (S, T commute).

Proof »

(i) Let M have a basis wrt which S has diagonal matrix

A1
A=
An
and 7" has diagonal matrix
M1
B =
[in

Then AB = BA. Therefore ST =T'S.

(ii) Let ST =TS. Since S is diagonalisable we have:

M:Ml@"'@Mi@"'@Mka
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distinct sum of eigenspaces of S. Since S and 7" commute, T leaves

each M, invariant:

Since T' is diagonalisable we have:
(T — pgl) .. (T — 1) =0,
distinct g, ..., p;. Therefore
(T, — palag,) - (Tag, — ulag,) = 0.

Therefore Ty, is diagonalisable. Therefore M; has a basis of eigenvec-
tors of T'. Therefore M has a basis of eigenvectors of S, and of T.
<

10.3 Conjugacy Classes
Problem: Given two linear operators
S, T: M — M,

to determine whether they are equivalent up to an isomorphism of M, i.e. is

there a linear isomorphism M £ M so that the diagram

M 2 M

r| &

M — M

T
commutes, i.e.
RS =TR,

ie.

RSR™' =17

Definition. S is conjugate to T if there exists a linear isomorphism R such
that
RSR™' =T.

Conjugacy is an equivalence relation on £(M); the equivalence classes are
called conjugacy classes.

10-7



If T'e £L(M) has matrix A € K™ wrt some basis of M then the set of
all matrices which can represent T is:

{PAP™': P € K™" is invertible},

which is a conjugacy class in K™*".
Conversely, the set of all linear operators on M which can be represented
by A is:
{RTR™': Ris a linear isomorphism of M},

which is a conjugacy class in L(M).
Hence we have a bijective map from the set of conjugacy classes in L£(M)
to the set of conjugacy classes in K™*" (see Figure 10.2).

RTR —1

PAP -1

Figure 10.2

The problem of determining which conjugacy class T belongs to is thus
equivalent to determining which conjugacy class A belongs to.

A simple way of distinguishing conjugacy classes is to use properties such
as: rank, trace, determinant, eigenvalues, characteristic polynomial, which
are the same for all elements of a conjugacy class.

Ezxamples:
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1. Let

A0 00
1 A0 0 .
J = 01 10 |2 Jordan \-block of size 4.
00 1 X
(4 x 4, X on diagonal, 1 just below diagonal, zero elsewhere).
0000
1000
T=M=1910 0
0010
Therefore
(J - )\1)61 = €9,
(J - )\1)62 = €3,
(J — M)es = ey,
(J - )\1)64 = 0.
Thus
K* €1 e €3 €
| A
1m(J—)\[) €y €3 €4 0
| Ll
im(J,1)? es e4 0
| Ll
im(j — )3 e O
| |
{0} 0
Thus

im(J — AI) has basis es, €3, e4, rank(J — ) = 3,
im(J — AI)? has basis e3, e4, rank(J — A\[)? = 2,
im(J — AI)

( 3 has basis ey, rank(J — A\ )3 = 1,
(J = \)* = 0.
A—X 0 0 0
char J = (1] )\—1X )\BX 8 =(A=X)L
0 0 1 A—X

Therefore A is the only eigenvalue of .J, and the A-eigenspace = ker(.J —
AI) has basis ey.
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2. Let

0 0
1 0 0 0
I A
J = A0
0 1 0
A0
0 0 1

(Jordan A-blocks on diagonal: 3 x 3,2 x 2,2 x 2).

K7 €1 €9€4€5 €3€5€7
~ e — ——
51 52 s3
l
Hl’l(J - )\[) €9 €3€5€7
N N——
51 52
l
1m(J — )\[)2 €3
~—~
S1
l

{0}
where 1, s5 and s3 are the dimensions of the kernel of (J—A\I) restricted
to im(J — A )?,im(J — AI) and K7 respectively.

char J = (A — X)7. X is the only eigenvector; dim M-eigenspace = 3 =
number of Jordan blocks.

(J — )\)61 €9
(J - /\)62 — €3
(J —A)eg =0 eigenvector
(J - /\)64 €5

(J —Aes =0 eigenvector

(J - /\)66 = €7
(J —Xer =0 eigenvector.
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10.4 Jordan Forms

Definition. A square matrix J € K™*" is called a Jordan matriz if it is of
the form

Ji
J = & ,
Jp
where each J; is a Jordan block.
Example:
A0 O
1 A0
0 1 X
A0
J = 1 A ’
@ 0
Lo
w0
L op

(where X # p (say)) is a 9 x 9 Jordan matrix.
Note that

(i) char J = (A — X)%(u — X)%; eigenvalue A\, with algebraic multiplicity 5;
eigenvalue p, with algebraic multiplicity 4.

(i)

dimension of A-eigenspace = number of A\-blocks
= geometric multiplicity of eigenvalue \ = 2;

geometric multiplicity of eigenvalue p = 2.
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(iii)

(J = M) =

(J = AP =

Therefore

o = O
—_ o O
o OO

0 0
10 ’
= A 0 .
1 L=\ < non-sing.
non-sing. — p—A 0
8- =\
000
000
100
0 0
0 0
_\)2
(n 1>\) (M—O)\)Q < non-sing.
. (—N)? 0
non-sing. — 1 (1 — \)?
000
000
000
0 0
0 0
N.S.

rank(J — M) =2+ 144,
rank(J — A)? =1+ 0+ 4,
rank(J — A\ )* = 0+ 0 + 4.
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More generally, if J is a Jordan n x n matrix, with

by A-blocks of size 1,
by A-blocks of size 2,

bk.)\—blocks of size k,

and if A has algebraic multiplicity m then

by +2by + 3bg + -+ - =m,
rank(J — AI) has rank:

0by + 1by + 2b3 + 3bs + - - - + (n — m),
rank(J — AI)? has rank:

0by + 0bg + 1b3 4 2by + - - - + (n — m),
rank(J — AI)? has rank:

0by + 0by + 0bg + 1by + 2b5 + - - - + (n — m),

and so on. Hence the number by of A-blocks of size k in J is uniquely
determined by the conjugacy class of J.

Theorem 10.4. Let T' € L(M) be a linear operator on a finite dimensional
vector space over a field K which is algebraically closed. Then T can be
represented by a Jordan matrix J. The matrixz J, which by the preceding is
uniquely determined, apart from the arrangement of the blocks on the diago-
nal, is called the Jordan form of T

Proof » Since K is algebraically closed, the characteristic polynomial is a
product of linear factors; so, by Hamilton-Cayley we have

(T — M1 .. (T = \1)™ =0

(say), with Aj, ..., A\x distinct factors.
By primary decomposition:

M:MIEBEBMkH
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where M; = ker(T — \;1)". We will show that M; has a basis wrt which T),
has a Jordan matrix with \; on the diagonal.
Put S = TMz — )\ZlMZ Then
M; 2 M,

and S = 0, i.e. S is a nilpotent operator. Suppose S™ = 0 but S"7! # 0,
and consider:

M; .. Qs by by Y Ys 2 2,
|
im S
|
im 52
|
l (%)
im S"3 Ty Lo Yl w YspZl - Zsy - v - Zsg - -« Zsg
|
im S™2 Yioo Ysy 21 e Zsy oo Zsy
|
im S ! 21 2
|
{0}
Choose a basis 21, . . ., 25, for im S"~!. Choose y1,...,ys, € im S"2 such that
Sy; = z;. Extend to a basis z1,..., 2, ..., 2s, for the kernel of im 5" —
im S~ Thus y1,..., s, 21, - -, 2s, iS a basis for im S™2.
Now repeat the construction: choose w1,...,%s,y1,...,Ys, € iMmS"3
such that Sz; = y;, Sy; = 2. Extend to a basis z1,...,2s,...,2, for
the kernel of im S"™3 — im S™72. ThUS T1, ..., e, Y1, - - s Ysgs 215 - - -, Zsy 1S

basis for im S" 3.
Continue in this way until we get a basis

Ay vy Qs b1y bsyy oo YLy ooy Ysi s By e ey Zs,
(say), for M;, with
Saj = bj,Sbj = Cj, .. .,Syj = Zj,SZj =0.

Now write the basis elements in order, by going down each column of (k)
in turn, starting at the left most column (and leaving out any column whose
elements have already been written down).
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Relative to this basis for M; the matrix of S is a Jordan matrix with zeros
on the diagonal. Therefore the matrix of T, = S + A;1 is a Jordan matrix

with \; on the diagonal.
Putting together these bases for My, ..., My we get a basis for M wrt
which T" has a Jordan matrix, as required. «

Example: To find a Jordan matrix J conjugate to the matrix

The characteristic polynomial is

5—-X 4 3
p= -1 -X =3

1 —2 1-X
=(5-X)[-X(1-X)—-6]—4[—(1—X)+3]+3[2+ X]
=(5-X)[X? - X —6] —4[X + 2]+ 3]2+ X]
=5X?2-5X -30-X*+X?4+6X —4X —8+3X+6
= —X?4+6X?% 32
= (X +2)(—X?+8X — 16)
= (X +2)(X —4)%

Therefore, by Hamilton-Cayley the operator R® 5 R3 satisfies:
(A+20)(A—4D)* =0.
Therefore, by primary decomposition:

R? = ker(A + 21) @ ker(A — 41)*.

Now
7 4 3
ker(A+2[)=ker [ -1 2 -3
1 -2 3
7 4 3
—ker | 0 18 —18 o 3211”;’“’ 21
0 O 0 oW owW
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Therefore

(v, B,7) € ker(A+2I) < Ta+40+3y=0

B—v=0
S Ta+Ty=0
B=v=0

& (a,0,7) = (o, —a, —a) = a1, —1,—1).

Therefore ker(A + 217) has basis u; = (1,—1, —1).

1 4 3
ker(A —4)?> =ker | —1 —4 -3
1 -2 -3
0 —18 —18
=ker|[ O 18 18
0 18 18
011
=ker| 0 0 O
0 00

Therefore
(o, 8,7) Eker(A—4l)?* < B4+~7=0
& (o, 3,7) = (o, 3, —B) = a(1,0,0) + 3(0,1, —1).

Therefore (1,0,0), (0,1, —1) is a basis for ker(A — 41)2.
Put
U2:(1,0,0>, U3:(A—4I)'U,2:(1,—1,1)

So w1, us, us is a basis for R? such that

(A + 2])U1 = 0,

(A — 4I>U2 = Us,

(A — 4T)us =0,
Le.

Au1 = —2U1,

Aug = 4uy + us,

AU3 = 4U3.
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Therefore wrt basis

Uy = (17 _17 _1) =€ — €2 — €3,
Ug = (1707()) = €1,

us = (1,—1,1) =e1 — e+ e3

the operator A has matrix

J:

—2

0
0 4
0 1

_~ O O

Let P be the transition matrix from (e, es, e3) to (uq, ug, us).

1
P = -1
-1
Therefore
PAP™! =

as required.

Note. (i)

-1

1 1
1
0 1
0 —4 -}
1 1 0
0 -4 4
0 1 1
4 4 0
1 -1 2
-2 0 0
0 4 0 |=
0 1 4

Uy = €1 — €y — €3
U9 = €1
ug =e; —exte3

0 -1 -1 0
2 2 0 1
0 -1 1 0
5 4 3 1
-1 0 =3 -1
1 -2 1 —1
1 1 1
-1 0 -1
-1 0 1
J,
€1 = U9
= U1+U3:261—262
Uy —ug = —263
€1 = U9
= eg = —%U1+U2—
€3 = —%Ul + %U3
1 1
0 —3 —3
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1 1 1 100 111100
-10 -1010}|~(010T1T1QO0 ]|~
-1 0 1 001 01 2101
2202 1 2 000 -1
~1 0101 1 01 01 1
0020 00 20 -1

Ezxample: To find the Jordan form of

1 1 3
A= 5 2 6
-2 -1 -3
1-X 1 3
char A = 5 2—X 6
-2 -1 -3-X

N O =

=1-X)[2-X)(-3-X)+6]—[B(-3—X)+12]+3[-5+2(2—X)]

=(1-X)[X?+ X] - [-5X — 3] +3[-1 — 2X]
=X+ X -X°-X*+5X+3-6X -3
= -X°

Therefore operator R? 4 R3 satisfies

A® =0.
Now
1 1 3 1 1 3 0 0
A% = 5 2 6 5 2 6 = 3 3
—2 -1 -3 —2 -1 -3 —1 -1
So put

Uy = €1 = (1707()) = €1,
Ug = A61 = (1, 5, —2) =e1 + 562 — 263,
= A%¢; = (0,3, 1) = 3ey — e3.

So wrt new basis u1, us, uz operator A has matrix
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Also

So

Thus

U2 —2U3 = €1 — €9.

€2 = U — Uy + 2us,

€3 = 362 — Ug = 3U1 — 3U2 + 5U3.

€1 = Uq,
€y = Uy — Uy + 2us,

es = 3u; — 3ug + dus.

Therefore PAP~! = J, where

Check:

PA=JP &

OSO=R O OO =

1 1 3
P={(0 -1 -3
0 2 5
1 3 1 1 3
-1 -3 5 2 6 =
2 5 -2 -1 -3
0 0 0 0 0
1 3 =11 1 3
-1 -3 0 -1 -3

10.5 Determinants

Let M be a vector space of finite dimension n, and M L N be a linear
operator. The pull-back (or transpose) of T' is the operator

defined by

The transpose of T* is T itself (by duality) written 7. So:

M E Nt
(T f,z) = (f, Tx).

MELEN (T.=17),
M E N
(T* f,z) = (f, Tix).
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If M = N and T has matrix A = (a}) wrt basis u; then

(T ug) = (W, Touwg) = (o, ofu) = o

Therefore T* has matrix A® wrt basis u’.
More generally we have the pull-back

M® I NO.
and push-forward
T*
My = Ny
defined by
(T*S)(x1, ..., 2,) = S(Taay, ..., Tex,),
(T.S)(fY, ..., f")y = S(T*f*, ..., T f").

These maps T*, T, are linear, and preserve the wedge-product. In particular

the spaces M™ and M,y are 1-dimensional. Therefore for M L M the
push-forward:

T
My = M),
and the pull-back
M o

must each be multiplication by a scalar (called det T', det T respectively).
To see what these scalars are let T" have matrix A = («
Then

') wrt basis u;.
Ti(ug Ao ANup) =Tuy A+ AT,
= (o' uy) A A (g ug,)

=det Au; A -+ Au,.

Therefore M, L My, is multiplication by det A. Similarly M ) I ) s
multiplication by det A® = det A. Therefore

det T = det T™ = det A,

independent of choice of basis.

Exzample: Let dim M = 4, and M - M have matrix A = (af) wrt basis u;.
Then
, 4!
dlmM(Q) = ﬁ = 6,
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and wrt basis u; A ug, ug A us, Uy A Uy, Ug A Us, Us N Ug, U3 N Uy
T s M) — M)
satisfies

T*(ul N UQ) = TU,1 N TUQ
= (o&ul + OZ%'U/Q + oz‘;’u;; + OJ%U4) AN (aéul + OéUQ + Oégu?, + &§U4)

(12 21
= (a5 —ajaz)u; Aug + .. ..

Therefore matrix of 7, is a 6 X 6 matrix whose entries are 2 x 2 subdetermi-
nants of A.

Theorem 10.5. If M L M has rank r then
(i) My 5 M,y is non-zero,
(11) M1y Iy M 41y is zero.
Proof »
(i) Let y1,...,y, be a basis for im T, and let y; = T'z;. Then

Toaoi A ANxp =Tz A ATz, =y A--- Ay, # 0.

(ii) Let u; be a basis for M. Then
T*uil /\"'/\’LLZ‘T_H :T’U/il /\"'/\jﬂu”_H :O,

since Tw;,,...,Tu; ., € imT, which has dimension r. Therefore lin-
early independent. «

Corollary 10.1. If T has matriz A then rankT = r < all (r+1) x (r +
1) subdeterminants are zero, and there exists atl least one non-zero r X r
subdeterminant.
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Chapter 11

Orientation

11.1 Orientation of Vector Spaces

Let M be a finite dimensional real vector space. Let P = (p}) be the transi-
tion matrix from basis uq, ..., u, to basis wy, ..., w,:

i
uj = piw.

Then
U A - Au, =det Pwy A -+ A w,.

Definition. uq,...,u, has same orientation as wi,...,w, if ug A --- A u,
is a positive multiple of wy A --- A w,, i.e. det P > 0. Otherwise opposite
oritentation as, i.e. det P < 0.

‘Same orientation as’ is an equivalence relation on the set of all bases
for M. There are just two equivalence classes. We call M an oriented vec-
tor space if one of these classes has been designated as positively oriented
bases and the other as negatively oriented bases. We call this choosing an
orientation for M.

For R™ we may designate the equivalence class of the usual basis ey, ..., e,
as being positively oriented bases. This is called the usual orientation of R"™.

Example: In R3, with usual orientation. ey, eq, e3 (see Figure 11.1) is posi-
tively oriented (by definition).

62/\61/\63:—61/\62/\63,

ea Neg Nep =ep Neag A es.
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€3

€2

€1

Figure 11.1

Therefore es, €1, e3 is negatively oriented and es, e3, ey is positively ori-
ented.

Definition. Let M be a real vector space of finite dimension n with a non-
singular symmetric scalar product (-|-). We call uy,...,u, a standard basis
if
+1
(wiluy) =
+1

Recall that such bases for M exist, and the numbers of — signs is uniquely
determined.

Theorem 11.1. Let M be oriented. Then the n-form
vol=u' A2 A~ Au™

15 independent of the choice of positively oriented standard basis for M. It is
called the volume form on M.
If vy, ..., v, is any positively oriented basis for M then

vol = \/(—1)3 det(v|v;) vt A A"

Proof »
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1. Let wq,...,w, be another positively oriented standard basis for M:
w' = piu? (say). Therefore

w A AWt =det Pul Ao AU
But det P > 0 and

+1 +1
Pt P = .
+1 +1

Therefore
(—1)°(det P)2 =(-1)°.

Therefore
(det P)* = 1.

Therefore det P = 1. Therefore
w A AWt =ut A A U™ = vol,
as required.

2. Let u’ = p'v’ (say), det P > 0. Then

+1
p P=aG,
+1

where g;; = (v;|v;). Therefore
(—1)%(det P)* = det G.

Therefore

det P =/ (—1)*det G.

Therefore
vol=u' A~ Au =det Pvt A~ Av" = /(=1)sdet Go' A -~ A",
as required. «

Corollary 11.1. vol has components \/|det g;;| €, ..., wrt any positively ori-
ented basis.
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FExample: Take R™ with usual orientation and dot product. Let

D={tlvy+ - +t",:0<t" <1}

be the parallelogram spanned by vectors vy,...,v,. Let A be the matrix
having vy,...,v, as columns.
R" i Rn7 V; = Aei.
€3
U3
€2
U1
€1
Figure 11.2

(for example, see Figure 11.2).

vol(vy, ..., v,) = vol(Aey,..., Ae,)
= det Avol(ey,...,e,)
=det A
= +|det A

= t+Lebesgue measure of D,

and Lebesgue measure of D = /| det(v;|v;)|

We continue to consider a real oriented vector space M of finite dimension
n with a non-singular symmetric scalar product (-|-) with s signs.
M) denotes the vector space of skew-symmetric tensors of type

Mx---xM-— K.

—7r—

Theorem 11.2. There exists a unique linear operator

M2 ppnr),
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called the Hodge star operator, with the property that for each positively
oriented standard basis uq,...,u, we have

*(uP A AUT) = Sppr .. ST A - AU (no summation here),

Example: If M is 3-dimensional oriented Euclidean, and wq,us,us is any
positively oriented orthonormal then

MDY 5 M@ @y,
with

s(u' + apu® + azu®) = agu? Aud + agu® Aut Fazut AU,
#(ou? A 4 aou® Aut 4 asut Au?) = aqut + agu® 4 asu®.
Thus, if v has components «; wrt u‘, and w has components 3; wrt u’ then
(v Aw) has components €%« B wrt u' for any positively oriented orthonor-
mal basis u;.
We write v x w = *(v A w), and call it the vector product of v and w
because:

vXw=x*(vAw)
= *[(au' + agu® + azu®) A (Bru' + Bou® + Bsu®)]
= *[(afs — azBo)u* Au + .. ]
= (aafs — asBo)u' + ...,

as required.

Proof »(of theorem) If % exists then it must be unique, from the definition.
Thus it is sufficient to define one such operator . For any positively oriented
basis we define *w by contraction as:

—1)% . . o
(*¥W)iy 41y = —( r') gt g Wi e | det gl €y -

[\ J/
-~

vol

w
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xw is then well-defined independent of choice of basis, since contraction is
independent of a choice of basis. Thus wrt a positively oriented standard
basis uq, ..., Uy,

'U _ Sl Z == ] — 1 R T
g {0 Z.7&‘7_}8mdw u A---Au".
w;.» = 1, other components of w by skew-symmetry, otherwise zero. There-
fore

_1)5 |
(%W)y41,m = . $189 ... Spwr. 111l = Sp41 ... Sy,

as required as other components of xw by skew-symmetry are zero.. «

Theorem 11.3. There is a unique scalar product (-|-) on each M) such
that

w A n = (xw|n) vol
for each w € M™, n € M™ ™. The scalar product is non-singular and
symmetric for a standard basis

(W A AUt A AU = (et L (e =
and u'A. .. u" is orthogonal to the other basis element of {u" A+ - -Au'r }; <...ci..
Proof » Define (+|-) by w An = (*w|n)vol. Then (-|-) is a bilinear form on

M=),
If uy,...,u, is a positively oriented standard basis for M then
vol =u' Ao AU AWTEA AU
w U
= (Srg1- s A AU [@TEA - Al Vol

Vv
*W n

Therefore
(WA AU A AU = Sy s, = (WY L (W u™),
as required. Similarly other scalar products give zero. «

Similarly other scalar products give zero.

Example: If uy, us, us is an orthonormal basis for M then u?Au?, uAut, ut Au?
is an orthonormal basis for M| since

(u* APl Au?) = (WP u?) (WPlu?) = 1.1 = 1,

(u? Aud|u? Aut) = (u?|u?) (uPut) = 0.0 = 0.
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11.2 Orientation of Coordinate Systems

Definition. Let X be an n-dimensional manifold. Two coordinate systems
on X: y',...,y" with domain V, and z',..., 2" with domain W have the
same orientation if

oyt ....y")

o=, ..., 2")

on VNW. We call X oriented if a family of coordinate systems is given on
X whose domains cover X, and such that any two have the same orientation.
We then call these coordinate systems positively oriented.

>0

Note. On VNW,

Oy
dy' = ——dz’.
Y 07 :
Therefore
1 n __ ayz 1 n
dy - N---Ndy" =det | == | dz" N--- Ndz
07
oy, ..., y"
_ (ya ’y)dzl/\ /\dZn
a(zY, ..., 2")
Therefore for each a € VN, %, ce % has same orientation as (,%, cee 8%.
Ya Y, Za Za

Thus each tangent space T, X is an n-dimensional oriented vector space.

If X has a metric tensor (:|-) then 7,X has a non-singular symmetric
scalar product (-|-), for each a € X. Therefore we can define a differential
n-form vol on X, called the volume form on X by:

(vol), = the volume form on 7, X.

Also, if w is a differential r-form on X then we can define a differential
(n —r)-form on X, xw, called the Hodge star of w by

(¥w)q = *(w,) for each a € X.
If uq, ..., u, are positively oriented vector fields on X with domain V', and
ds* = £(u')? £ - £ (u")?

then

vol=u'' A - A"

on V.
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If 4%, ..., y" is a positively oriented coordinate system on X with domain

V then
vol = /| det gi;| dy* A -+ A dy”

_ (9,9
9 =\ oyl 5y )

1. R?, with usual coordinates: x, %, and polar coordinates: r,6 (see Figure
11.3). Take z,y as positively oriented:

on V', where

Examples:

xr=rcosf, y=rsinb.

Therefore

dx ANdy = (cos@dr —rsin@df) A (sinf dr + rcosf df) = rdr A d.

R
d
o or
9
a0
K
oz
Figure 11.3

r > 0. Therefore r, 6 is positively oriented.

area element = dz Ady = rdr A db,
ds* = (dz)® + (dy)* = (dr)* + (r d6)*.
Therefore
xdr = dy, *dy= —dz,
xdr =rdf, x(rdf)=—dr.
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2. Unit sphere S% in R3: 22 + y? + 22 = 1. On S? we have:
xdr+ydy+ zdz = 0.
Therefore (wedge with dz):
ydr Ndy + zdx ANdz = 0.

Therefore .
dr Ndy = —dz N dzx.
Y

Therefore the coordinate system x,y on z > 0 has the same orientation
as the coordinate system z,x on y > 0.

We orient S? so that these coordinates are positively oriented. Now
ds* = (dz)* + (dy)* + (d2)*

= (dz)* + (dy)* + (—gdx — %dy)z (on z > 0)

a? 2 ry Yy 2
= (1 + ;) (dz)* + 2;dw dy + (1 + ;) (dy)=.

Therefore wrt coordinates x, v,

TNz o1es

Therefore
Therefore ]
area element = —dz A dy.

2]
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Chapter 12

Manifolds and (n)-dimensional
Vector Analysis

This chapter could be considered a continuation of Chapter 11.

12.1 Gradient

Definition. If f is a scalar field on a manifold X, with non-singular metric
tensor (+|-), then we define the gradient of f to be the vector field grad f
such that

(grad f|v) =< df|v >= vf = rate of change of f along v
for each vector field v.

Thus grad f is raising the index of df.

of . .
df = —dy"
if gV
has components
of
oy’
and
;0f 0

df=q¢g"——
grad f =g Dyl Oy
has components
ij of
dy?-

Theorem 12.1. If the metric tensor is positive definite then
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(i) grad f is in the direction of fastest increase of f;
(ii) the rate of change of f in the direction of fastest increase is || grad f||;

(iii) grad f is orthogonal to the level surfaces of f (see Figure 12.1).

grad f

Figure 12.1
Proof »

(i) The rate of change of f along any unit vector field v has absolute value

[vf| = |(grad flv)| < | grad f[[|v]| = || grad f]],

by Cauchy-Schwarz.

(ii) For
Y grad f
| grad f|
the maximum is attained:
grad f
vf| = gradf7>' = || grad f||.
ot = (e g )| = ot

(iii) If v is tangented to the level surface f = ¢ then

(grad flv) =vf = 0.
<
Definition. If f is a scalar field on a 2n-dimensional manifold X, with

coordinates
1 n

' =(q¢...¢" p1...pn)
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and skew-symmetric tensor
()= dpindg
i=1

then along a curve a whose velocity vector is grad f we have:

da i 0
=09 73
dt O
le.
1 9f
& ! Oq*
: 0 .. :
g™ 1 g_f
dn | = 9|
dt -1 op1
: . 0 :
dpn 0
r —1 oo
ie.
dq' _ Of
dp; o of
dt — 0g¢
(Hamiltonian Equations of Motion).
Note.
of da’ y af of

1) = S (0() 2 (a(1) = g (@(0) 5L (0(1) 2 (al) = 0,

since g% is skew-symmetric.
ie.

rate of change of f along grad f = (df, grad f) = (grad f|grad ) =0,

since (+|-) is skew-symmetric.
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12.2 3-dimensional Vector Analysis

Given X a 3-dimensional manifold, x,y, z positively oriented orthonormal
coordinates, i.e. metric tensor with line element (dz)? + (dy)? + (dz)?. Write

0 0 0
V_<8_x8_y$>’ dr = (dz dy dz),
dS = (dy Ndz, dz Ndz, de Ndy), dV =dxANdyAdz,
of of of
F: 1 2 3 — — S 2 I
(F* F* F°) = (F| F, F3), Vf <8x 3y 82) for a scalar field f,
oF®  OF? oF'  OF* OF?
F=(2 2 F= .
VX (83/ 9z 7 )’ V- 8x+8y+8z

The vector field 9 9 9
F=FV=F'—+F—+4+F_—
v ox + oy + 0z
components F', corresponds, lowering the index, to the 1-form (components
F)
F.dr = Fidx + Fydy + Fsdz,
df = (Vf).dr,
d[F.dr] = (V x F).dS,
d[F.dS] = (V.F)dV,

x1 = dV,
xdr = dS,
xdS = dr,
*V = 1.
Now
1-forms 2-forms 3-froms

Qx) - 9(X) — ®Xx) - 2X)
F.dr < (V x F).dS

f = VEdr FdS % (VR
(V x F).dr,

grad f,
curl
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12.3 Results

Field | Components | Type
grad f Vf vector
curl F V x F vector
div F V.F scalar

Theorem 12.2. Let v be a vector field on a manifold, with non-singular

symmetric metric tensor. Let w be the 1-form given by lowering the index of
v. Then the scalar field divv defined by:

d*w = (divv) vol

is called the divergence of v. If v has components v' wrt coordinates y* then

1 0 ,
dive = —— V'),

where g = | det g;;|.

Proof »
(W) j1ojnr = 97V €y = VIV €G-
Therefore

sw=/guidy* Ndy® A+ Ndy" — Jguidy' AdyP A Ndy

Therefore

d*w = aiyi(\/ﬁvi)dyl ANdyA A - ANdy" = — yA(\/gvi)Vol,

as required. «

Theorem 12.3. Let f be a scalar field on a manifold, with non-singular
symmetric metric tensor. Then the scalar field

Af =divgrad f = xd * df

is called the Laplacian of f. Wrt coordinates y* we have

ap=—L0 (@gijﬁ) :

V9 0y Oy
Thus
1 i) 9 11 in of
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Examples:

(i) R, with (ds)? = (dz')* +--- +

—~

dz™)?, (g¥) =1, g = 1. Therefore

o*f o*f
_ o) 0 0 o
Af=(am - o) Tgfl =g T e
0
oz
Therefore
0? 02

A = N

2 usual Laplacian.
x

* o
(ii) R, with (ds)? = (dz)? + (dy)* + (dz)? — (dt)*: Minkowski.
Af=(a oy o o) (1

—_
Q;Q‘)
gy

|
—_
SRR

_Pf N *f  0°f &f
0z Oyr 022 o2

Therefore
9? 9? 0? 9?

A:—+—+ — — wave operator.
o2 T o2 922 o perator

1 0
oo 2 . 2 _ 2 . 2 L _ . 2
(iii) S*, with (ds)® = (df)” + (sinfdy)*, g;; = ( 0 sin20 ) ,g =sin“0.
1 o 0 1 0
Af = — — | siné
= (was) (o 4 ) ()
o 0 sin L
= 1 an«?
sind \ 9 8g0 e 3@
1 - L9 1 of
~ sinf 80 96 8g0 sinfdp )|
Definition. Let X be a 3-dimensional oriented manifold with non-singular
symmetric metric tensor. Let v be a vector field corresponding to the 1-form

w. Then curlv is the vector field corresponding to the 1-form xdw. Wrt
positively oriented coordinates ¥, curlv has components:

ewkl vy Ovj
NG 8y7 8y

=]
IR

where g = | det g;;|.
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12.4 Closed and Exact Forms
Definition. A differential form w € Q"(X) is called
(i) closed if dw = 0;
(ii) ezact if w = dn for some n € Q"71(X).
We note that
1. w exact = w closed (ddn = 0),

2. w an exact 1-form = w = df (say)
= / W= / df =0
for each closed curve «.

Ezxamples:
1. If w= Pdx + Qdy is a 1-form on an open V C R? then
w=dP Ndx+dQ Ndy

_(oP ., 0P 0Q ,  0Q
= <8 dz + 3y dy)/\da:—l—(axdaﬂ— 8ydy)/\dy

= <8—Q—8—P) dz N dy.

or Oy
Therefore
wlsclosed(:)a—P:@onV
y  Ox
wlsexact(:)P—% —g‘;j
for some scalar field f on V.
2. The 1-form
_rdy—ydx
a2 42

on R? — {0} is called the angle-form about 0. We have:

0 x _ 1 202 Y’ —uw

or <x2+y2) _+x2+y2 o (22 + 12)? - (22 + 42)2’
0 —y 1 21 y? — 2?
()

2 +y2 + (:1:2 +y2)2 - (:1:2 +y2)2'
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Therefore w is closed.

w is not exact because if a(t) = (cost,sint) is the unit circle about 0
(0 <t <2m) then

/w:/% COSt'Smt_Sint'(_smt)dtz/zﬂldt:%#&

cos?t + sin’t

However, on R? — {negative or zero r-axis} we have
xr=rcosf, y=rsinb,
where 6 is a scalar field, with —7 < 6 <7 and

rcosf.(—rcosf) — rsinf.(—rsin f)

do = db.
r2cos? 0 + r2sin®

w =

F b

Figure 12.2

Therefore, if o is a curve from a to b (see Figure 12.2),

/w = / df = 0(b) — 0(a) = change in angle along a.

Note.

dz _zdz  (z—wy)(dz+idy) axde+ydy +Z,a:dy—yd:c

z Zz 2%+ y? 4y z? + y?

0z

Therefore w = im F-
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. 0 0 0
F=F'"— 4+ F?_— 4+ 3 _—
ox + y + 0z
is a force field in R3 then
F.dr = Fydx + Fody + Fydz, F,=F"

is called the work element.

/F.d’r = work done by the force F along the curve a.

F'is conservative if F.dr is exact, i.e.
F.dr =dV,

where V' is a scalar field. V is called a potential function for F.

Work done by F along o from a to b (see Figure 12.3) is

/F.dr = / dV = V(b) — V(a) = potential difference.

=

b

Figure 12.3
A necessary condition that F be conservative is that F.dr be closed,
ie.
V x F=0.
12.5 Contraction and Results

Definition. An open set V' C R" is called contractible to a € V if there

exists a C'*° map
Vx[0,1]2V
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such that

forallz e V.

Ezxample: V star-shaped = V contractible. ¢(z,t) = tz+(1—1t)a (see Figure
12.4).

Figure 12.4

Theorem 12.4 (Poincaré Lemma). Let w € Q"(V), where V is a con-
tractible open subset of R™, and r > 1. Then w is exact iff w is closed.

Proof » Let I = [0,1] be the unit interval 0 < ¢ < 1, and define a linear
operator (‘homotopy’)

(v x 1)L oy
for each 7 > 1 by

1
H[f dt \dz’] = (/ fdt) dx”,
0
H[f dz’] = 0.
Now calculate the operator dH + Hd:
(i) if n = fdt A dx’ then

1
dHn+ Hdn=d K/ fdt) d:c“’} + H [—%dt A dat /\da:‘]]
0

1 1
= (/ a—f.dt) dx' A dz? — (/ a—fdt) dz' A dz”
o Ozt o Oxt

I
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(i) if n = fda” then

dHn+Hdnp=0+H %dt/\d:ﬁ"jt a—fdxi A da?
ot ox’
1 8f
= —dt | dz’ +0
([ ) i+
= [f (=, )] Zodz”.
(iii) Now let V' be contractible, with
VxI5HV
v
Figure 12.5

a C'™° map such that (see Figure 12.5)

ple,1) ==,

o(z,0) = a.
So

¢'(z,1) = ',

©'(z,0) = a’.
Therefore

ozt
Let w € Q"(V), say w = g(z)dz™ A--- Adz'™. Apply o*:
p'w = glp(z,t))de™ A Adp

8@i1 3 69021 69027 ‘ 8@“
= g(p(z,1)) {%dﬂ + Wdt} A A {aﬂ dalr + =2 —dt

oot o att=1,
0 att=0.

89021 agolr agoll 8(’011”

= oot ) [ 3 2w e (2P

12-11
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Apply dH + Hd:

g o :
(dH + Hd)p"w = |g(o(z,t) =— ... == dx* N~ Ndax’m 40
=g(z)05 ... dx" N Nda?r
= g(x)dz"™ A+ Adx"
=w.
Hence:

(dH + Hd)p*'w = w
for all w € Q" (V).

(iv) Let w be closed. Then
dp*w = p"dw = 0.

Therefore
dHp 'w = w.

Therefore w is exact. «

Theorem 12.5. Let w be a closed r-form, with domain V' open in manifold
X. Let a € V. Then there exists an open neighbourhood W of a such that w
15 exact on W.

Proof » Let y be a coordinate system on X at a, domain U C V| say. Let
W C U be an open neighbourhood of a such that y(W) is an open ball (see
Figure 12.8).

Figure 12.6
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Counsider

WS yWw), W < y(W)

(open ball), where ¢ is the inverse map.

do*w = ¢*dw = 0, since w is closed. Therefore p*w is closed. Therefore
©*w = dn on y(W), by Poincaré. Therefore

dy'n =y'dn=y'o'w=w
on W. Therefore w is exact on W. <«

Theorem 12.6. Let X be a 2-dimensional oriented manifold with a positive
definite metric tensor. Let uy,us be positively oriented orthonormal vector
fields on X, with domain V (moving frame). Then there ezists a unique
1-form w on V such that

du! 0 —w ut
0 (e )= (2 57)2 (%)
on V. w is called the connection form (gauge field) wrt moving frame uy, us.

Proof » Any 1-form w on V' can be written uniquely as:

w=oau'+ pu?, «,p scalar fields.

w satisfies (x) & du' = —w A u?,
du® = w A u'
& du' = —(au' + Bu®) Au? = —au' A,

du® = (au' + Bu?) Aut = —But Au?.
Thus «, § are uniquely determined. «

Theorem 12.7. Let X be a 2-dimensional oriented manifold with positive
definite metric tensor. Let uy,us be a moving frame with domain V, with
connection form w and

dw = Ku' ANu? = K.area element.

Then the scalar field K is independent of the choice of moving frame, and is
called the Gaussian curvature of X.
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Proof » Let wy,ws be another moving frame with domain V:

w'\ [ cosf —sinf ut
w? )\ sinf cosé u?
(say). Write this in matrix form as:

w = Pu.

()= (2 57) 2 ()

Write this in matrix form as:

Also

du = Q Awu.
Then

dw = (dP)ANu+ Pdu
= (dP)Nu+PQAu
= (dP + PQ) ANu
— (dP + PQ) A P~ lw
= [(dP)P™'+ PQP | Aw

- —sinfdf —cosfdb cosf sind
o cosfdf —sinfdo —sinf cosé
n cosf) —sinf 0 —w cosf sind A
sinff cos@ w 0 —sinf@ cosf w
- 0 —db n 0 —w A
“ 1\ ds o w 0 v

B 0 —(w+db)
_<w+M 0 )Aw

Therefore w + df is the connection form wrt moving frame w;, w, and
dw + df] = dw + ddf = dw,

as required. <

Example: On S?, with angle coordinates 6, ¢,

ds* = (d0)* + (sinfdy)?, u'=df, u*=sinfdp.
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Recall

w = —cosfdp,
dw =sinfdf A dp = u' Au?.

Therefore Gaussian curvature is constant function 1.

Theorem 12.8. Let X be an oriented 2-dimensional manifold with positive
definite metric tensor. Then the Gaussian curvature of X is zero iff for each
a € X there exists local coordinates x,y such that

ds* = (dz)* + (dy)?,

10
9=\ 0o 1 )"

Proof » Let uy,us be a moving frame with connection form w on an open
neighbourhood V' of a on which the Poincaré lemma holds. Then, on V:

i.e.

Gaussian curvature is zero < dw = 0
& w=—df (say), by Poincaré
Sw+dl=0
< uq, Uy can be rotated to a new frame wy, wo
having connection form 0
& dw' =0,dw? =0
& w' = dr,w? =dy (say), by Poincaré
& ds® = (dx)* + (dy)*.

—

N «

12.6 Surface in R3

Let X be a 2-dimensional submanifold of R3. Denote all vectors by their
usual components in R3. Let N be a field of unit vectors normal to X AN
be coordinates on X, and let ¥ = (z,y, 2). Let g—ﬁ, g_tr; be a basis for vectors
tangent to X (see Figure 12.9).

8 —>
att 0

=l
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Therefore .
9’t . OFf ON
T N &y,
oot ott ot N

Figure 12.7
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If d is a vector field on X tangent to X then
NN=1
along u. Therefore L .
(VaN).N + N.VzN = 0.

Therefore VgN is tangential to X.
So define tensor field S on X

Sii = —ViN.

S is called the shape operator, and measures the amount of curvature of X
in R3. Wrt coordinates t!,¢? S has covariant components

(symmetric).

o, .0 ofF ON 9z _
L. o= —_— e =\ — — = " - .N
S0 (8# |Satﬂ) ot ot Ot

Therefore S, is a self-adjoint operator on T, X for each a. Therefore it has
real eigenvalues K, Ky and orthonormal eigenvectors uy, uy (see Figure 12.8)
exist, (say) K; > K.

R

If we intersect X by a plane normal to X containing the vector
cosBuq + sin 6 uy

at a, we have a curve « of intersection along which the unit tangent vector
t satisfies:

Therefore

Therefore



at a, where k is the curvature of a at a. Therefore
Kk =t.5t = (cosfuy + sinBuy).S(cosfuy +sinbuy) (at a)
= k1 cos> 0 + Ky sin? 6.

Therefore u; is the direction of maximum curvature K, and u, is the direc-
tion of minimum curvature K.
Put N = ug, with uq, us, u3 a moving frame.

Vuz = —w;3 @ ug — wj @ Uy — wh @ us.
Therefore
Su; = -V us = <w§, upyug + (wg,ul)m,
Sty = —Vus = (w3, us)uy + (w3, ug)us.
Therefore
Kike = det S
= <w?1n u1><w§, u2> - <w?1>7 u2><w?2n ul)
= w% A wg(ul, Us)
= dW%(Ul,Uz)
= ru' Au?(ug,ug)
=K
(since dQ = —Q A Q, 50 dwl = —w} ANwh = Wi Awd = wl Aw?).

12.7 Integration on a Manifold (Sketch)

Let w be a differential n-form on an oriented n-dimensional manifold X. We
want to define
fi+
X
the integral of w over X.
To justify in detail the construction which follows X must satisfy some
conditions. It is sufficient, for instance, that X be a submanifold of some

RY.
(i) Suppose

w= [yl yndyt AN dy"
=y [f(2, ... ") dzt A A da]

*
:ywl
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on the domain V of a positively oriented coordinate system y° (see
Figure 12.9), and that w is zero outside V', and that

supp f = closure of {x € y(V) : f(x) # 0}

is a bounded set contained in y(V'). Then we define

W= Wi,
X y(V)
ie.
/ ft oy dyt A A dyt = f(z1,... xn)dey .. dxy,
X y(V)
v y(V)
X y wl@
—— supp f
Figure 12.9

(Lebesgue integral). The definition of [ «w does not depend on the
choice of coordinates, since if z* with domain W is another such coor-
dinate system,

w = 2 wy

(say), then
P wa = wi,

where ¢ = z oy™! (see Figure 12.10). Therefore

/ w1:/ w1:/ go*wgz/ UJQ:/ wa.
y(V) y(VNWw) y(VNWw) 2(VNW) z(W)
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y(V) 2W)

Figure 12.10
(ii) For a general n-form w on X we write
w=w+- 4w,

where each w; is an n-form satisfying the conditions of (i), and define

/wz/m+m+/w,
X X X

and check that the result is independent of the choice of wy, ..., w,.

Definition. If X has a metric tensor then

volume of X :/ volume form.
b's

Example: If



is a vector field in R3,
v=v1dr+vody + v3dz = V.dr
is the corresponding 1-form (v; = v"), and
xv =v1dy Ndz +vydz Ndx +vsdr AN dy = v.ds

is the corresponding 2-form then if u; is a moving frame, with ug = N normal
to surface S (see Figure 12.11), then

7 = o'y,
v = o',
w0 = g w2 AU+ g ud Aut + agut AU,
where o; = o'. Therefore pull-back of v to X is
azut Au? = (V.N)dS,

where dS = u' A u? (area form). Therefore

/y.ﬁ = /(U.]V)dS = fluz of U across S

/N.ﬁ:/dS:areaofS.

Note. v.dr is work element, v.ds is flux element, N.ds is area element of
vector field V.
\%
Uz = N

Uy
U2

Figure 12.11
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12.8 Stokes Theorem and Applications

Theorem 12.9 (Stokes). (George Gabriel Stokes 1819 - 1903, Skreen Co.
Sligo) Let w be an (n — 1)-form on an n-dimensional manifold X with an
(n — 1)-dimensional boundary 0X (see Figure 12.12). Then

/dw:/ w,
X X

where X 5 X is the inclusion map.

Proof »(Sketch) We write

W=wyp+ -+ W,

where each w; satisfies the conditions of either (i), (ii) or (iii) below, and we
prove it for each w;. It then follows for w.

Figure 12.12

(i) Let
w :f(yl,...,y”)dy2A~-~Ady"

on the domain V' of a positively oriented coordinate system y® such that
y(V) = (_17 1) X X <_17 1) (CUbe)7

w zero outside V', and supp f a closed bounded subset of y(V') (see

Figure 12.13).
/ "w =0,
0X

dw = ﬁdyl/\alyz/\-~-/\dy”.
oy!

since w is zero on 0X.
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Therefore

/dw:/ 6—fldx1dx2...d:pn
X y(V)
—d:p dzy . ..dx,
/1 /1 l Ot 1} 2

:/ / (f(L 2o, ... x,) — f(=1,29,...,2,)]dxy . .. dx,
-1 -1

Therefore

/dw:0:/ 7w,
X 0xX

For (ii) and (iii), let w be zero outside the domain W of functions
yl,y?, ..., y", with y a homeomorphism:

y(W) =(-1,0] x (=1,1) x --- x (—=1,1)

supp f

y(V)
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Figure 12.13

y(V)

SUpp

figure 12.14

(see Figure 12.14), where y' 4% ..., y" are positively oriented coor-
dinates on X with domain W — (W N 9X), y* = 0 on W N 9X,
and y2,...,y" are positively oriented coordinates on X with domain

W N oX. Then
(ii) if
w:f(y17y277yn)dy2/\/\dyn (SaY)7
(supp f closed bounded subset of y(1)) then
ifw=f0,y% ..., y")dy* A--- Ndy",

dw = ﬁdyl/\dyZ/\---/\dy".
oyt
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Therefore

/ dw = / 8—f1dx1dx2 ...dxy,
X yw) 0T
:/ f(0,z9,... ,2,)dxy ... dz,
y(WAOX)

= / w;
0X

w=fly',..y")dyt NdyP AN dy"
(say), (supp f closed bounded subset of (1)) then

(iii) if

7w =0,

since y! =0 on W A 0X. Also

Therefore

1 0 1
/dw:—/ / { a—édxg}dxl...d:cnzo.
X -1 -1 _101’

—_——

Therefore
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Applications of Stokes Theorem:
1. In R?: w 1-form (see Figure 12.17).

/ i*w:/dw,
oD w

9Q P

/ (Pdr+ Qdy) = / <— — —) dx Ndy Green’s Theorem.
oD D ox 8y

In particular:

(a)

1
/ :L’dy:—/ ydr = — Edz:/d:c/\dy:areaofD.
oD oD 21 Jop D

(b) if f =u+iv, w= fdz then
dw = [—8—5—@4—2(@—8—;)] dz A dy.

Now
dw = 0 < f holomorphic ,

by Cauchy-Riemann. Therefore
f(z)dz =0 if f holomorphic (Cauchy).
oD

2. In R3: X surface (see Figure 12.18).

/aXE.QZ/X(VxE).ﬁ:/X(VxE)ﬂIdS,

1.e.

work of F' around loop 0X = flux of V x F across surface X
= flux of V x F through loop 0.X.

3. In R3:
| pNas= [ pas- [ (v,
oD oD D

i.e. (see Figure 12.19)

flux of F' out of region D = integral of V.F" over interior of D.
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If V.F' > 0 at a then a is a source for F,
if V.FF <0 at a then a is a sink for F,
if V.F =0 then F is source-free (see Figure 12.20).

4. If X is n-dimensional and w A n an (n — 1)-form then
/ wAn= / d(wAn) (by Stokes)
ox b

:/X(dw)/\n—l-(—l)r/XW/\dna

w an r-form, by Leibsing. Therefore

/(dw)/\n: / wAn —|—(—1)r“/w/\d77
X 0X X
—

boundary term
(integration by parts) (see Figure 12.21).

Ezxample: X connected, 3-dimensional in R3.

[VfndS= | f(VfdS)
o0X

ox
— [(9451 4 19.09)
= [vsE + vy
Therefore
V2f=0;forVfn=0n0X =Vf=0on X = f=0on X

(Dirichlet Neumann).

If X has a metric tensor and no boundary then
/ (xdw|n) vol = (—1)7"“/ (*w|dn) vol.
b's b's

If (say) the metric is positive definite and n odd then ** = 1, so putting
*w in place of w:

/X((—l)"*d*w\n)vol:/(w|d77)vo1_

X
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Therefore (—1)" * d* is the adjoint of the operator d. Hence § = =+ * dx
is the operator adjoint to d.

A =dd+od

is self-adjoint, and is called the Laplacian on f.
. If X is the unit ball in R™ (see Figure 12.22), with n > 2:

X:{xeR":Zxﬁgl}
then 0X is the (n — 1)-dimensional sphere

0X ={xreR":) a7 =1}
Theorem 12.10. There is no C'*™° map

X 50X

which leaves each point of the sphere 0X fixed.

Proof » Suppose ¢ exists. Then we have a commutative diagram:

w X 2 X

07 {
a 0X
where 7 is the inclusion map and 1 the identity map.
Let
w=zld® N ANdz", a=itw.
So

dw = dz' Ndz* A --- Nda"  (volume form on X),
da =0,

since da is an n-form on (n — 1)-dimensional 0.X. Therefore

w=a=1ip"a.

/i*w:/ .
X 0X

Therefore volume of X is

/dwz/dgp*az/gp*da/cp*O:O.
X X X X

This is a contradiction so the result follows. «

Therefore
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6. In R*, Minkowski: the electromagnetic field is a 2-form:
F = (E.dr) Adt + B.dS,

where E is components of electric field, and B are components of mag-
netic field.

One of Maxwell’s equations is:
dF =0
(the other is d x F' = J charge-current), i.e.

d[(E.dr) A dt + B.dS] = 0,

1.e.
(V x E)dSNdt+ (V.B)dV + %—?.ﬁ/\ dt =0,
1.e.
0B
E=_——
V x 5
V.B=0,

i.e. magnetic field is source free.

Therefore electromotive force (EMF) around loop 0.X (see Figure 12.23)

1S
/ E@ Stgqes/(v Xﬁ)ﬁ
0X X

Maxwell d B.dS
i /s

= rate of decrease of magnetic flux through loop.

12-29



