Course 345: INTRODUCTION TO SOLITONS

Problem Set 4

Date Issued: April 14, 2008 Date due: April 28, 2008

1. Verify that the Lax equation $L_{t}=[M, L]$ for the Lax pair given by the matrix linear differential operators

$$
\begin{gathered}
L=\left(\begin{array}{cc}
-i \partial_{x} & \psi^{*}(x) \\
-\psi(x) & i \partial_{x}
\end{array}\right) \\
M=\left(\begin{array}{cc}
-4 i \lambda^{3}+2 \lambda|\psi|^{2}+\psi^{*} \psi_{x}-\psi \psi_{x}^{*} & -4 i \lambda^{2} \psi^{*}-2 i \lambda \psi_{x}^{*}+i \psi_{x x}^{*}+2 i \psi^{* 2} \psi \\
-4 i \lambda^{2} \psi+2 i \lambda \psi_{x}+i \psi_{x x}+2 i \psi^{2} \psi^{*} & 4 i \lambda^{3}-2 \lambda|\psi|^{2}-\psi_{x} \psi^{*}+\psi \psi_{x}^{*}
\end{array}\right),
\end{gathered}
$$

where the real spectral parameter $\lambda=$ const, is equivalent to the nonlinear Schrödinger equation

$$
i \psi_{t}+\psi_{x x}+2|\psi|^{2} \psi=0
$$

2. Using the Lax matrices of the Problem 1 solve the problem of the time evolution of the scattering data for the nonlinear Schrödinger equation. Show that the scattering data are reflectionless.
3. Hirota's Method. Linearize the generalized sine-Gordon equation $u_{x t}+m^{2} \sin u=0$, m^{2} is a constant, by the transformation $u=2 i \log \frac{f^{*}}{f}$. Using the substitution $f=$ $1+\lambda f^{(1)}+\lambda^{2} f^{(2)}+\ldots$ construct
(a) One-soliton (kink) solution
(b) Two-kink solution
4. Solve the problem of small excitations $u(x, t)=u_{0}+\phi$ around the kink solution $u_{0}=4 \arctan e^{x-x_{0}}$ of the sine-Gordon model given by the equation

$$
\phi_{t t}-\phi_{x x}+\phi \cos u_{0}=0
$$

Find the eigenfunctions of the continuum part of the spectrum. Show that the potential created by the soliton is reflectionless.
5. Analyse the effect of small perturbation of the ϕ^{4} kink solution given by the equation

$$
\phi_{t t}-\phi_{x x}-m^{2} \phi+\lambda \phi^{3}+\varepsilon \frac{m^{3}}{\sqrt{\lambda}}=0
$$

where m, λ are the constants of the non-perturbed solution $\phi_{0}=\frac{m}{\sqrt{\lambda}} \tanh \frac{m x}{\sqrt{2}}$ and $\varepsilon \ll 1$.

