Course 345: INTRODUCTION TO SOLITONS

Problem Set 3

Date Issued: March 31, 2008
 Date due: April 7, 2008

1. Verify that the commutator of the third order differential operator

$$
M=-4 \frac{\partial^{3}}{\partial x^{3}}+3 u \frac{\partial}{\partial x}+3 \frac{\partial}{\partial x} u
$$

and the Sturm-Liouville operator

$$
L=-\frac{\partial^{2}}{\partial x^{2}}+u
$$

reduces the Lax equation $L_{t}+[L . M]=0$ to the KdV equation $u_{t}-6 u u_{x}+x_{x x x}=0$.
2. Use the inverse scattering transform to find the solution of the KdV equation $u_{t}-$ $6 u u_{x}+x_{x x x}=0$ which satisfies $u(x, 0)=f(x)$ where
(a) $f(x)=-\frac{9}{2} \operatorname{sech}^{2}(3 \mathrm{x} / 2)$ (Single soliton solution)
(b) $f(x)=-6 \operatorname{sech}^{2} \mathrm{x}$ (Two-soliton solution)
(c) $f(x)=-12 \operatorname{sech}^{2} \mathrm{x}$ (Three-soliton solution)
3. Find the asymptotic form of the three-soliton solution of the previous problem as $t \rightarrow \pm \infty$ and hence determine the phase shifts.
4. Cast the system of the ordinary differential equations

$$
\frac{d x}{d t}=g y, \quad \frac{d y}{d t}=-g x
$$

where $g(x, t)$ is a given continuous function, into the equivalent form

$$
L_{t}+[L, M]=0
$$

finding L as some symmetric, and M as some antisymmetric, real matrix whose elements depend upon x, y and g. Show that eigenvalues of L are constant and hence deduce that $x^{2}+y^{2}$ is constant for each solution of the system.

