Course 345: INTRODUCTION TO SOLITONS

Problem Set 2

Date Issued: February 18, 2008 Date due: February 25, 2008

1. (10 points) It has been shown (cf. Set 1, Problem 2) that the transformation of the KdV equation $u_{t}-6 u u_{x}+u_{x x x}=0$ by substituting $u(x, t)=-(3 t)^{-2 / 3} f(\eta) ; \quad \eta=$ $x /(3 t)^{1 / 3}$ yields

$$
f^{\prime \prime \prime}+(6 f-\eta) f^{\prime}-2 f=0
$$

Verify that the following transformation of the Miura's type $f=v^{\prime}-v^{2}, v=v(\eta)$ yields the Painleve equation of the second kind for v :

$$
v^{\prime \prime}-\eta v-2 v^{3}=0
$$

2. (5 points) Show that $x u+3 t u^{2}$ is a conserved density for the KdV equation $u_{t}-6 u u_{x}+x_{x x x}=0$.
3. (5 points) Find first three conservation laws for the modified KdV equation $u_{t}-6 u^{2} u_{x}+x_{x x x}=0$.
4. (5 points) Use the Bäcklund transformation of the Bürgers equation $u_{t}+u u_{x}=\alpha u_{x x}$ where α is a positive constant,

$$
v_{x}=-\frac{u v}{2 \alpha} ; \quad v_{t}=\frac{v}{4 \alpha}\left(u^{2}-2 \alpha u_{x}\right)
$$

to show that

$$
u_{t}+u u_{x}=\alpha u_{x x} \quad \text { and } \quad v_{t}=\alpha v_{x x}
$$

5. (5 points) Hirota's method. Using parametrization $u(x, t)=-2 \frac{\partial}{\partial x}\left(\frac{f_{x}}{f}\right)$ transform the Boussinesq equation

$$
u_{t t}-u_{x x}+3\left(u^{2}\right)_{x x}-u_{x x x x}=0
$$

into the bilinear form.

