Course 345: INTRODUCTION TO SOLITONS

Problem Set 1

Date Issued: January 28, 2008
 Date due: February 4, 2008

Each problem counts 5 points

1. Obtain the solution of the equation

$$
u_{t}+(1+u) u_{x}=0
$$

with
(a) $u(x, 0)=u_{0} x$,
$0 \leq x \leq 1 ; ~(\mathrm{~b}) ~ u(x, 0)=u_{0}(2-x)$,
$1 \leq x \leq 2 ;$
(c) $u(x, 0)=0, \quad x<0, x \geq 2$.
2. Transform the KdV equation $u_{t}-6 u u_{x}+u_{x x x}=0$ by substituting

$$
u(x, t)=-(3 t)^{-2 / 3} f(\eta) ; \quad \eta=x /(3 t)^{1 / 3}
$$

3. Show that

$$
u(x, t)=\frac{6 x\left(x^{3}-24 t\right)}{\left(x^{3}+12 t^{2}\right)^{2}}
$$

is a rational solution of the KdV equation $u_{t}-6 u u_{x}+u_{x x x}=0$.
4. Find solitary-wave solution of the Boussinesq equation

$$
u_{t t}-u_{x x}+3\left(u^{2}\right)_{x x}-u_{x x x x}=0
$$

in the form $u(x, t)=a \operatorname{sech}^{2}[b(x-\omega t)]$ where a, b, ω are constants. Show that a wave may propagate in either direction.
5. Find a solitary-wave solution of a modified KdV equation

$$
u_{t}+6 u^{2} u_{x}+u_{x x x}=0
$$

with $u, u_{x}, u_{x x} \rightarrow 0$ as $|x| \rightarrow \infty$.
6. Show that the modified KdV equation above has the rational solution

$$
u(x, t)=c-\frac{4 c}{4 c^{2}\left(x-6 c^{2} t\right)^{2}+1}
$$

