Course 141: MECHANICS

Problem Set 13: Solutions

* Problem 1

The radial energy equation of the particle is

$$
E=T+V=\frac{m \dot{r}^{2}}{2}+\frac{J^{2}}{2 m r^{2}}+\frac{k}{2 r^{2}}
$$

In the variable $u=1 / r$, we obtain

$$
\frac{J^{2}}{2 m}\left(\frac{d u}{d \theta}\right)^{2}+\frac{J^{2}}{2 m} u^{2}+\frac{k}{2} u^{2}=E
$$

and

$$
J^{2}\left(\frac{d u}{d \theta}\right)^{2}+\left(J^{2}+m k\right) u^{2}=2 m E
$$

Solution of this equation is of the form $u=\varepsilon \cos n\left(\theta-\theta_{0}\right)$. Indeed, in this case $\left(\frac{d u}{d \theta}\right)^{2}=\varepsilon^{2} n^{2} \sin ^{2} n\left(\theta-\theta_{0}\right)$ and identifying $J^{2} n^{2}=J^{2}+m k$ we can see that it is a solution of the radial energy equation if

$$
\varepsilon^{2}=\frac{2 m E}{J^{2}+m k}
$$

Orbits:

(a) Let $J^{2}+m k=0$. Then the radial equation reduces to

$$
J^{2}\left(\frac{d u}{d \theta}\right)^{2}=2 m E
$$

The solution of this simple equation is $u=\frac{\sqrt{2 m E}}{J}\left(\theta-\theta_{0}\right)=1 / r$ and the orbit is given by $r\left(\theta-\theta_{0}\right)=\frac{J}{\sqrt{2 m E}}$.
(b) Let $J^{2}+m k \equiv-C<0$. Then there are solutions with positive energy $E>0$ and the radial equation reads

$$
J^{2}\left(\frac{d u}{d \theta}\right)^{2}-C u^{2}=2 m E
$$

The solutions are $u=a \sinh n\left(\theta-\theta_{0}\right)$ where $J^{2} n^{2}=J^{2}+m k$ and $a^{2}=\frac{2 m E}{J^{2}+m k}$, so the orbit is $r \sinh n\left(\theta-\theta_{0}\right)=\sqrt{\frac{J^{2}+m k}{2 m E}}$
(c) Let $J^{2}+m k \equiv-C<0$ and $E=0$. The radial equation reads

$$
J^{2}\left(\frac{d u}{d \theta}\right)^{2}-C u^{2}=0
$$

so, the solutions with zero total energy are $u=a e^{ \pm n \theta}$ where $n^{2}=C=J^{2}+m k$ and the orbit is defined by the equation $r e^{ \pm n \theta}=1 / a=$ const.
(d) Let $J^{2}+m k \equiv-C<0$ and $E<0$. Then the radial equation is

$$
J^{2}\left(\frac{d u}{d \theta}\right)^{2}=-2 m E
$$

and the solution is $u=a \cosh n\left(\theta-\theta_{0}\right)$. To prove in one can apply the familiar relation $\cosh ^{2} \theta-\sinh ^{2} \theta=1$.

* Problem 2

(a) The potential energy of the central force $\vec{F}=F(r) \hat{r}$ is

$$
V(r)=-\int_{r_{0}}^{r} F\left(r^{\prime}\right) d r^{\prime}=\int_{\infty}^{r} \frac{c}{r^{3 / 2}}=-\frac{2 c}{\sqrt{r}}
$$

If $c>0$, the radial equation reads

$$
E=\frac{m \dot{r}^{2}}{2}+\frac{J^{2}}{2 m r^{2}}-\frac{2 c}{r^{1 / 2}}
$$

and the effective potential is $U_{e f f}=\frac{J^{2}}{2 m r^{2}}-\frac{2 c}{r^{1 / 2}}$.
(b) The motion is unbounded for $E \geq 0$, it is bounded between r_{1} and r_{2} for $E_{0}<E<0$ where E_{0} is the total energy on the circular orbit of radius r_{0}.
(c) Because

$$
U_{e f f}^{\prime}=-\frac{J^{2}}{m r_{0}^{3}}+\frac{c}{r_{0}^{3 / 2}}=0
$$

thus

$$
r_{0}=\left(\frac{J^{2}}{m c}\right)^{2 / 3}
$$

For a circular orbit $J=m v r_{0}$, so the orbital period is

$$
\tau=\frac{2 \pi r_{0}}{v}=2 \pi \sqrt{\frac{m}{c}} r_{0}^{5 / 4}
$$

* Problem 3

(a) The potential energy of the system is

$$
V=m g z=m g(r-l)
$$

The kinetic energy of the mass on the table is

$$
E_{1}=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)
$$

The kinetic energy of the suspended mass is

$$
e_{2}=\frac{m \dot{z}^{2}}{2}=\frac{m \dot{r}^{2}}{2}
$$

Thus, the total energy of the system is

$$
E=E_{1}+E_{2}+V=m \dot{r}^{2}+\frac{m r^{2} \dot{\phi}^{2}}{2}+m g(r-l)
$$

Conservation of the angular momentum $\vec{J}=m r^{2} \dot{\phi} \hat{k}$ gives

$$
E=m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}+m g(r-l)=\text { const }
$$

The effective radial equation then can be obtained by differentiation of this formula w.r.t. time:

$$
\frac{d E}{d t}=0=\left(2 m \ddot{r}-\frac{J^{2}}{m r^{3}}+m g\right) \dot{r}
$$

or, simple $2 m \ddot{r}-\frac{J^{2}}{m r^{3}}+m g=0$. This equation admits a solution for a circular orbit with $\ddot{r}=0, r=r_{0}=$ const:

$$
m g=\frac{J^{2}}{m r_{0}^{3}}
$$

thus $r_{0}=\left(\frac{J^{2}}{m^{2} g}\right)^{1 / 3}$. Because of the conservation of the angular momentum $\dot{\phi}=\frac{J}{m r_{0}^{2}}=\sqrt{\frac{g}{r_{0}}}=$ const.
(b) Because $E=m \dot{r}^{2}+U_{e f f}$ where $U_{e f f}=\frac{J^{2}}{2 m r^{2}}+m g(r-l)$ the physical motion is restricted by the condition $U_{\text {eff }} \leq E$. For $E \geq \frac{J^{2}}{2 m r^{2}}$ the motion is unbounded, i.e., both masses end up on the table. For $U_{\min } \leq E \leq \frac{J^{2}}{2 m r^{2}}$ the motion is bounded. The minimum $U_{\text {min }}$ corresponds to the stationary motion with $r=r_{0}=$ const.
(c) Expansion of the effective potential $U_{\text {eff }}$ in Teylor series in the vicinity of the equilibrium distance r_{0} gives:

$$
U_{e f f}\left(r_{0}+\delta\right) \approx U_{e f f}\left(r_{0}\right)+\left.\frac{\partial U_{e f f}}{\partial r}\right|_{r=r_{0}} \delta(t)+\left.\frac{1}{2} \frac{\partial^{2} U_{e f f}}{\partial r^{2}}\right|_{r=r_{0}} \delta^{2}(t)
$$

The equation of motion yields $\left.\frac{\partial U_{e f f}}{\partial r}\right|_{r=r_{0}}=0$ and the frequency of small oscillations is defined as $\omega^{2}=k /(2 m)$ where

$$
k=\left.\frac{\partial^{2} U_{e f f}}{\partial r^{2}}\right|_{r=r_{0}}=\frac{3 J^{2}}{m r_{0}^{4}}=\frac{3 m g}{r_{0}}
$$

* Problem 4

The energy of the planet before and after explosion explosion is $E_{1}=T_{1}+V_{1}$ and $E_{2}=T_{2}+V_{2}$, respectively. The kinetic energy conserves, i.e., $T_{1}=T_{2}$ while the potential energy decreases as $V_{2}=V_{1} / 2$ because $V(r)=-\frac{G M m}{r}$ and $M \rightarrow M / 2$. On the other hand, for a circular orbit $E_{1}=\left|\frac{V_{1}}{2}\right|$, thus $T_{1}=-\frac{V_{1}}{2}=T_{2}$ and after explosion

$$
E_{2}=-\frac{V_{1}}{2}+\frac{V_{1}}{2}=0
$$

That means the motion becomes parabolic.

* Problem 5

The corresponding equation of motion is

$$
m \ddot{\vec{r}}+k \vec{r}=0
$$

The solution of this isotropic oscillator problem is $\left(\omega^{2}=k / m\right)$

$$
\vec{r}=\vec{A} \cos \omega t+\vec{B} \sin \omega t
$$

where \vec{A}, \vec{B} are arbitrary constant vectors which are determined by the initial conditions. Thus, the motion is periodic with the period $\tau=2 \pi / \omega$ which is independent of the initial conditions.
For any fixed angle θ we can rotate the vectors \vec{A}, \vec{B} as

$$
\vec{A}=\vec{a} \cos \theta-\vec{b} \sin \theta ; \quad \vec{B}=\vec{a} \sin \theta+\vec{b} \cos \theta
$$

or, equivalently

$$
\vec{a}=\vec{A} \cos \theta+\vec{B} \sin \theta ; \quad \vec{b}=-\vec{A} \sin \theta+\vec{B} \cos \theta
$$

The choice of the angle θ is given by the condition that $(\vec{a} \cdot \vec{b})=0$, i.e., $\tan 2 \theta=$ $2(\vec{A} \cdot \vec{B}) /\left(A^{2}-B^{2}\right)$. Then the equation of motion becomes

$$
x=a \cos (\omega t-\theta) ; \quad y=b \sin (\omega t-\theta) ; \quad z=0
$$

This gives the equation of the orbit

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

which defines an ellipse with centre at the origin, and semi-axes a, b.

