Course 141: MECHANICS
Problem Set 13: Solutions

* Problem 1

The radial energy equation of the particle is
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In the variable u = 1/r, we obtain
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Solution of this equation is of the form u = ecosn(f — 6y). Indeed, in this case
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(Z—Z) = &2n?sin®n(0 — 6p) and identifying J*n? = J? + mk we can see that it is a

solution of the radial energy equation if
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Orbits:
(a) Let J? + mk = 0. Then the radial equation reduces to
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The solution of this simple equation is u = ¥22£(§ — §,) = 1/r and the orbit is
given by (6 — 60y) = \/ﬁ

(b) Let J? + mk = —C < 0. Then there are solutions with positive energy £ > 0
and the radial equation reads
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The solutions are u = asinhn(f — 6y) where J?n? = J? + mk and a® = JngLk’
so the orbit is rsinhn(6 — 6y) = \/7‘]_;;:;/%



(c) Let J2 +mk = —C < 0 and E = 0. The radial equation reads
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so, the solutions with zero total energy are v = ae™ where n? = C' = J? + mk
and the orbit is defined by the equation re*"® =1/a = const.

(d) Let J24+mk = —C < 0 and E < 0. Then the radial equation is
du\’
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and the solution is u = a coshn(f — 6y). To prove in one can apply the familiar
relation cosh? § — sinh? 6 = 1.

* Problem 2

(a) The potential energy of the central force F = F(r)f is
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If ¢ > 0, the radial equation reads
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(b) The motion is unbounded for E > 0, it is bounded between r; and ry for
FEy < E < 0 where Ej is the total energy on the circular orbit of radius rg.
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and the effective potential is Ugrr =
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For a circular orbit J = mury, so the orbital period is
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* Problem 3
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(a) The potential energy of the system is
V =mgz=mg(r —1)
The kinetic energy of the mass on the table is
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The kinetic energy of the suspended mass is
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Thus, the total energy of the system is
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Conservation of the angular momentum J = mr2q§l% gives
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The effective radial equation then can be obtained by differentiation of this
formula w.r.t. time:

or, simple 2mi — m‘]—; + mg = 0. This equation admits a solution for a circular
orbit with ¥ = 0,r = rg = const:
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thus ro = <—2> . Because of the conservation of the angular momentum
m-g

¢ =-L; =,/L = const.
mrg 0

(b) Because E = mi? + U,y where Ugpp = 2‘]—22 + mg(r — ) the physical motion is

mnr

restricted by the condition Ugsy < E. For E > % the motion is unbounded,
2

i.e., both masses end up on the table. For U,,;, < E < 2 the motion
mr

is bounded. The minimum U,,;, corresponds to the stationary motion with
r =19 = const.

(c) Expansion of the effective potential U.r; in Teylor series in the vicinity of the
equilibrium distance ry gives:
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OUess = 0 and the frequency of small oscil-
T r=ro
lations is defined as w? = k/(2m) where

The equation of motion yields
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* Problem 4

The energy of the planet before and after explosion explosion is £; = 17 + V; and
Ey = T, + V5, respectively. The kinetic energy conserves, i.e., T} = Ty while the

M
potential energy decreases as Vo = V;/2 because V(r) = — T and M — M/2.
Vi %
On the other hand, for a circular orbit £ = ‘?1 , thus T7 = —51 = T, and after
explosion
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That means the motion becomes parabolic.

* Problem 5

The corresponding equation of motion is
mi* + k' = 0
The solution of this isotropic oscillator problem is (w? = k/m)

= gcoswt—l—ésinwt



where ff, B are arbitrary constant vectors which are determined by the initial condi-
tions. Thus, the motion is periodic with the period 7 = 27 /w which is independent
of the initial conditions.

For any fixed angle # we can rotate the vectors /_f, B as
gzd’cos@—ﬁsin@; B =asinf + bcosh
or, equivalently

Eiz/fcos&+§sin€; b= —Asind + Bcosd
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The choice of the angle € is given by the condition that (a@-b) = 0, i.e., tan20 =
2(A- B)/(A? — B?). Then the equation of motion becomes

x = acos(wt — 0); y = bsin(wt — 6); z2=0

This gives the equation of the orbit
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which defines an ellipse with centre at the origin, and semi-axes a, b.



