
Course 141: MECHANICS

Problem Set 13: Solutions

* Problem 1

The radial energy equation of the particle is

E = T + V =
mṙ2

2
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In the variable u = 1/r, we obtain
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u2 = E

and
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+ (J2 + mk)u2 = 2mE

Solution of this equation is of the form u = ε cos n(θ − θ0). Indeed, in this case
(

du
dθ

)2

= ε2n2 sin2 n(θ − θ0) and identifying J2n2 = J2 + mk we can see that it is a
solution of the radial energy equation if

ε2 =
2mE

J2 + mk

Orbits:

(a) Let J2 + mk = 0. Then the radial equation reduces to

J2

(

du

dθ

)2

= 2mE

The solution of this simple equation is u =
√

2mE
J

(θ − θ0) = 1/r and the orbit is
given by r(θ − θ0) = J√

2mE
.

(b) Let J2 + mk ≡ −C < 0. Then there are solutions with positive energy E > 0
and the radial equation reads
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)2

− Cu2 = 2mE

The solutions are u = a sinh n(θ − θ0) where J2n2 = J2 + mk and a2 = 2mE
J2+mk

,

so the orbit is r sinh n(θ − θ0) =
√

J2+mk
2mE



(c) Let J2 + mk ≡ −C < 0 and E = 0. The radial equation reads

J2

(

du

dθ

)2

− Cu2 = 0,

so, the solutions with zero total energy are u = ae±nθ where n2 = C = J2 + mk
and the orbit is defined by the equation re±nθ = 1/a = const.

(d) Let J2 + mk ≡ −C < 0 and E < 0. Then the radial equation is

J2

(
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dθ

)2

= −2mE

and the solution is u = a cosh n(θ − θ0). To prove in one can apply the familiar
relation cosh2 θ − sinh2 θ = 1.

* Problem 2

(a) The potential energy of the central force ~F = F (r)r̂ is

V (r) = −
r
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If c > 0, the radial equation reads

E =
mṙ2

2
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and the effective potential is Ueff =
J2
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−
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r1/2
.

(b) The motion is unbounded for E ≥ 0, it is bounded between r1 and r2 for
E0 < E < 0 where E0 is the total energy on the circular orbit of radius r0.
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For a circular orbit J = mvr0, so the orbital period is
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* Problem 3
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(a) The potential energy of the system is

V = mgz = mg(r − l)

The kinetic energy of the mass on the table is

E1 =
m

2
(ṙ2 + r2φ̇2)

The kinetic energy of the suspended mass is

e2 =
mż2

2
=

mṙ2

2

Thus, the total energy of the system is

E = E1 + E2 + V = mṙ2 +
mr2φ̇2

2
+ mg(r − l)

Conservation of the angular momentum ~J = mr2φ̇k̂ gives

E = mṙ2 +
J2

2mr2
+ mg(r − l) = const

The effective radial equation then can be obtained by differentiation of this
formula w.r.t. time:

dE

dt
= 0 =
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)

ṙ

or, simple 2mr̈ − J2

mr3 + mg = 0. This equation admits a solution for a circular
orbit with r̈ = 0, r = r0 = const:
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mr3
0

,



thus r0 =

(
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m2g

)1/3

. Because of the conservation of the angular momentum

φ̇ = J
mr2

0

=
√

g
r0

= const.

(b) Because E = mṙ2 + Ueff where Ueff = J2

2mr2 + mg(r − l) the physical motion is

restricted by the condition Ueff ≤ E. For E ≥ J2

2mr2 the motion is unbounded,

i.e., both masses end up on the table. For Umin ≤ E ≤
J2

2mr2
the motion

is bounded. The minimum Umin corresponds to the stationary motion with
r = r0 = const.

(c) Expansion of the effective potential Ueff in Teylor series in the vicinity of the
equilibrium distance r0 gives:

Ueff(r0 + δ) ≈ Ueff(r0) +
∂Ueff
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The equation of motion yields
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= 0 and the frequency of small oscil-

lations is defined as ω2 = k/(2m) where
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* Problem 4

The energy of the planet before and after explosion explosion is E1 = T1 + V1 and
E2 = T2 + V2, respectively. The kinetic energy conserves, i.e., T1 = T2 while the

potential energy decreases as V2 = V1/2 because V (r) = −
GMm

r
and M → M/2.

On the other hand, for a circular orbit E1 =

∣
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, thus T1 = −
V1

2
= T2 and after

explosion

E2 = −
V1

2
+
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2
= 0

That means the motion becomes parabolic.

* Problem 5

The corresponding equation of motion is

m~̈r + k~r = 0

The solution of this isotropic oscillator problem is (ω2 = k/m)

~r = ~A cos ωt + ~B sin ωt



where ~A, ~B are arbitrary constant vectors which are determined by the initial condi-
tions. Thus, the motion is periodic with the period τ = 2π/ω which is independent
of the initial conditions.

For any fixed angle θ we can rotate the vectors ~A, ~B as

~A = ~a cos θ −~b sin θ; ~B = ~a sin θ +~b cos θ

or, equivalently

~a = ~A cos θ + ~B sin θ; ~b = − ~A sin θ + ~B cos θ

The choice of the angle θ is given by the condition that (~a · ~b) = 0, i.e., tan 2θ =

2( ~A · ~B)/(A2 − B2). Then the equation of motion becomes

x = a cos(ωt − θ); y = b sin(ωt − θ); z = 0

This gives the equation of the orbit

x2

a2
+

y2

b2
= 1

which defines an ellipse with centre at the origin, and semi-axes a, b.


