Course 141: MECHANICS

Problem Set 4

Date Issued: November 14, 2007

- 1. A lift ascends from the ground with uniform speed. At time T_1 a person drops a marble through the floor. The marble falls with uniform acceleration $g = 9,81 \ m/s^2$ and hits the ground T_2 seconds after T_1 . Find the lift's height at time T_1 in terms of T_1, T_2 and g. (Answer clues: If $T_1 = T_2 = 4s$, $h = 39.2 \ m$).
- 2. A particle is moving in a plane with constant radial velocity $\dot{r} = 3 \ m/s$. The angular velocity is constant and has magnitude $\dot{\theta} = 2 \ rad/s$. When the particle is 4 m from the origin, find
 - (a) The magnitude of the velocity and the acceleration.
 - (b) Cartesian components x, y of the vector of position \vec{r} (suppose $\theta_0 = 0$).
- 3. A boy stands at the peak of a hill which slopes downwards uniformly at angle ϕ . At which angle θ from the horizontal should he throw a rock so that it has the greatest range?

- 4. Mud is thrown from the tyre of a wheel (radius R) of a car travelling at a speed v, where $v^2 > gR$. The tyre is not slipping, i.e., the velocity of the point of contact, P, realtive to road is zero.
 - (a) Neglecting air resistance, what is the maximum height mud can rise above the ground?
 - (b) At what angle θ does the highest rising mud leave the wheel? (Don't jump to conclusions).

