Course 141: MECHANICS

Problem Set 3

Date Issued: November 7, 2007

 Date Due: November 14, 20071. (5 points) Simplify: $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$.
2. (5 points) Two particles 1 and 2 are moving along x - and y -axis with respective velocities $\vec{v}_{1}=2 \mathrm{~m} \hat{i} / \mathrm{s}$ and $\vec{v}_{2}=3 \mathrm{~m} \hat{j} / \mathrm{s}$. At $t=0$ they are at $x_{1}=-3 m, \quad y_{1}=0$ and $x_{2}=0, \quad y_{2}=-3 m$, respectively (here s and m are parameters).
(a) Sketch the positions of the particles at $t=0$, the direction of their velocities, and the vector $\vec{r}_{2}-\vec{r}_{1}$ which represents the position of the particle 2 with r espect to particle 1.
(b) Find $\vec{r}_{2}-\vec{r}_{1}$ as a function of time.
(c) When and where are these particles closest?
3. (5 points) A uniformly accelerated car passes two telephone poles with velocities $10 \mathrm{~km} / \mathrm{hr}$ and $20 \mathrm{~km} / \mathrm{hr}$, respectively. Calculate its velocity when it is halfway between the poles. Let $a=$ car's acceleration.
4. (10 points) A spring gun fires two shots, the velocity in each case being v_{0}. In the first case the shot if fired at an angle of elevation α and in the second case at an angle α^{\prime}. Show that the time interval between the two firing such that two shots will collide in mid-air is

$$
\delta t=\frac{2 v_{0}}{g} \frac{\sin \left(\alpha-\alpha^{\prime}\right)}{\cos \alpha+\cos \alpha^{\prime}}
$$

5. (5 points bonus problem) Three small snails are each at at vertex of an equilateral triangle of side 60 cm . The first sets out towards the second, the second towards the third, and the third towards the first, with an uniform speed of $5 \mathrm{~cm} / \mathrm{min}$. During their motion each of them always heads towards its respective target snail. How long does it take for them to meet?
6. (5 points bonus problem) In problem 5 how many revolutions do the snails make before they meet? Assume point-like snails.
