Course 141: MECHANICS

Problem Set 20
Date Issued: May 7, 2008

1. Two particles of mass m are connected between three springs and perform longitudinal oscillations. The strengths of the three springs are $k .2 k$ and $4 k$, respectively. Deduce the equations of motion and find the normal modes of the oscillation. Is the general motion periodic?

2. The wave on the string propagates with a displacement

$$
y=A \sin (\omega t-k x)
$$

Show that the average rate of working by the force (average value of transverse force times transverse velocity) equals the rate of energy transfer along the string.
3. A particle of mass m is situated on the axis of a uniform disk, of mass M and radius R. Find the gravitational force that the disk exerts on the particle.
4. The trajectory of a charged particle moving in a magnetic field is given by

$$
\vec{r}=a \cos \omega t \hat{\mathbf{i}}+a \sin \omega t \hat{\mathbf{j}}+c t \hat{\mathbf{k}}
$$

where a, ω and c are some constants. Show that particle moves with constant speed and find the magnitude of its acceleration.
5. A particle is sliding along a smooth radial grove in a circular turntable which is rotating with constant angular velocity Ω. The distance of the particle from the rotation axis at time t is observed to be $r=b \cosh \Omega t$ where b is a positive constant. Find the speed of the particle (relative to a fixed reference frame) and find the magnitude and direction of the acceleration.
6. A body is projected vertically upwards with speed v_{0} in a medium that exerts a drag force $-m k \vec{v}$ where k is a positive constant and \vec{v} is the velocity of the body. Find the maximum height achieved by the body, the time taken to reach that height, and the terminal speed.

