Course 141: MECHANICS

Problem Set 1

Date Issued: October 31, 2007

- 1. Given $\vec{a} = 3\hat{i} + \hat{j}$, $\vec{b} = -\hat{i} + 6\hat{j} + 2\hat{k}$, $\vec{c} = 7\hat{i} \hat{k}$ (in meters).
 - (a) Calculate $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{a} \times (\vec{b} \times \vec{c})$
 - (b) Verify that $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \ (\vec{a} \cdot \vec{c}) \vec{c} \ (\vec{a} \cdot \vec{b})$.
- 2. A particle position at time t (in sec.) is given by

$$\vec{r}(t) = \hat{i}t + \hat{j}\sin t + \hat{k}\cos t$$
 (in meters).

- (a) Sketch the particle's trajectory.
- (b) Sketch the particle's velocity \vec{v} .
- (c) What is the particle's speed $v = |\vec{v}|$?
- (d) How far does the particle travel between t = 0 and t = 2 sec. along its trajectory?
- (e) What is the particle's acceleration \vec{a} at t = 0?
- 3. A particle is moving such that its position vector at time t is $\vec{r}_1 = (6t^3 4t)\hat{i} + (t^2 2t)\hat{j} + t^3\hat{k}$ meters, a second particle is moving such that its position vector is $\vec{r}_2 = t^2\hat{i} (8t^3 + 6t)\hat{j} + t\hat{k}$ meters.
 - (a) Obtain the relative position vector \vec{r} , of particle 2 with respect to particle 1. Write down the relative velocity \vec{v} and relative acceleration \vec{a} at tine t.
 - (b) Find the component of relative velocity, \vec{v} along the direction $c=4\hat{i}-3\hat{j}$ at t=2 seconds.
- 4. Recall: The amount of work, dW, done by a force \vec{F} on a particle whose change in position is $d\vec{r}$ is defined as (in Joules)

$$dW = \vec{F} \cdot d\vec{r}$$

Suppose $\vec{F} = 2\hat{i} + \hat{j} - 3\hat{k}$ Newtons, the particle's initial position is $\vec{r}_1 = \hat{i} + 2\hat{j} + \hat{k}$ meters, and its final position is $\vec{r}_2 = \hat{i} - \hat{k}$ meters. Find the work done by \vec{F} .

5. For the force $\vec{F} = y^2\hat{i} + \hat{j}$ calculate the work done over the two path I and II shown below.