Course 141: MECHANICS

Problem Set 1

Date Issued: October 31, 2007

1. Given $\vec{a}=3 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+6 \hat{j}+2 \hat{k}, \vec{c}=7 \hat{i}-\hat{k}$ (in meters).
(a) Calculate $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{a} \times(\vec{b} \times \vec{c})$
(b) Verify that $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$.
2. A particle position at time t (in sec.) is given by

$$
\vec{r}(t)=\hat{i} t+\hat{j} \sin t+\hat{k} \cos t \quad \text { (in meters). }
$$

(a) Sketch the particle's trajectory.
(b) Sketch the particle's velocity \vec{v}.
(c) What is the particle's speed $v=|\vec{v}|$?
(d) How far does the particle travel between $t=0$ and $t=2 \mathrm{sec}$. along its trajectory?
(e) What is the particle's acceleration \vec{a} at $t=0$?
3. A particle is moving such that its position vector at time t is $\vec{r}_{1}=\left(6 t^{3}-4 t\right) \hat{i}+$ $\left(t^{2}-2 t\right) \hat{j}+t^{3} \hat{k}$ meters, a second particle is moving such taht its position vector is $\vec{r}_{2}=t^{2} \hat{i}-\left(8 t^{3}+6 t\right) \hat{j}+t \hat{k}$ meters.
(a) Obtain the relative position vector \vec{r}, of particle 2 with respect to particle 1. Write down the relative velocity \vec{v} and relative acceleration \vec{a} at tine t.
(b) Find the component of relative velocity, \vec{v} along the direction $c=4 \hat{i}-3 \hat{j}$ at $t=2$ seconds.
4. Recall: The amount of work, $d W$, done by a force \vec{F} on a particle whose change in position is $d \vec{r}$ is defined as (in Joules)

$$
d W=\vec{F} \cdot d \vec{r}
$$

Suppose $\vec{F}=2 \hat{i}+\hat{j}-3 \hat{k}$ Newtons, the particle's initial position is $\vec{r}_{1}=\hat{i}+2 \hat{j}+\hat{k}$ meters, and its final position is $\vec{r}_{2}=\hat{i}-\hat{k}$ meters. Find the work done by \vec{F}.
5. For the force $\vec{F}=y^{2} \hat{i}+\hat{j}$ calculate the work done over the two path I and II shown below.

