Course 141: MECHANICS

Problem Set 13

Date Issued: February 20, 2008 Date due: February 27, 2008

1. (5 points) Discuss the possible types of orbits for a particle moving under a central inverse-cube law force, decribed by the potential energy function $V = \frac{k}{2r^2}$. For the repulsive case (k > 0), show that the orbit equation is

$$r\cos n \ (\theta - \theta_0) = b$$

where n, b and θ are constants. Show that for the attractive case the nature of the orbit depends on the signs of $J^2 = mk$ and E. Find the equation of the orbit for each possible type. (Include the cases where one of these parameters vanishes.)

- 2. (5 points) A particle of mass m moves under the influence of the force $\vec{F} = -\frac{c\vec{r}}{r^{5/2}}$
 - (a) Calculate the potential energy.
 - (b) By means of the effective potential energy and the energy diagramm discuss the motion.
 - (c) Find the radius of any circular orbit in terms of the angular momentum and calculate the period for the orbit.
- 3. (5 points) Two equal point masses m are connected by a string which passes through a small hole on a frictionless mass on the table for vertical up-and-down motion of the suspended mass.
 - (a) Obtain the radial equation and find its solution for circular orbits.
 - (b) Evaluate the minimum of the effective potential energy. By means of the energy diagramm define the allowed physical region for motion and discuss the motion.
 - (c) Consider small radial perturbations of the circular orbit of the form $r(t) = r_0 + \delta(t)$ where $\delta(t) \ll r_0$. Describe the effect of this small radial impulsive blow on the orbital motion.
- 4. (5 points) A planet moves in a circular orbit about a massive star with force law given by $\vec{F} = -\frac{\alpha \vec{r}}{r^3}$. The star evolves into a supernova and blows off half its mass in a time short compared to the planet's orbital period. Assume that the supernova explosion is spherically symmetric. Show that the planet's orbit becomes parabolic.
- 5. (5 points) Consider the motion of a particle in the central force $\vec{F} = -k\vec{r}$. Show that
 - (a) The orbit is an ellipse with the force center at the center of the ellipse.
 - (b) The period is independent of the orbit parameters. Hint: use cartesian coordinates to solve for the orbit equation.