Course 141: MECHANICS

Problem Set 11

Date Issued: February 6, 2008 Date due: February 13, 2008

1. (5 points) A 0.3 kg mass is attached to a spring and oscillates at 2 Hz with a quality factor $Q=60$. Fing the spring constant k and damping constant γ.
2. (5 points) Solve the damped unforced oscillator by the following method. Define a new variable y by

$$
x=e^{\beta t} y
$$

where β is a constant. Subsitute into the equation of the damped unforced oscillator to find the equation satisfied by $y(t)$. Choose β such that the coefficient of \dot{y} vanises and solve in the cases of weak, strong and critical damping.
3. (5 points) Write down the solution to the unforced oscillator equation for the case $\omega_{0}>\gamma$ if the oscillator starts from $x=0$ with velocity v. Show that as ω_{0} is reduced to the critical value $\omega_{0}=\gamma$, the solution tends to the corresponding solution for the critically damped oscillator.
4. (5 points) Find the steady-state solution for a damped harmonic oscillator driven by the force $F(t)=m F_{0} \sin (\omega t)$.
5. (10 points) A particle of mass m moves under the action of a force

$$
F=-F_{0} \sinh (a x)=-\frac{F_{0}}{2}\left(e^{a x}-e^{-a x}\right)
$$

where $a>0$. Sketch the potential energy, discuss the motion, and solve for the frequency of small oscillations if there exists a point of stability.
6. (10 points bonus problem) A particle moving under a conservative force oscillates between x_{1} and x_{2}. Show that the period of oscillations is

$$
T=2 \int_{x_{1}}^{x_{2}} d x\left(\frac{m}{2\left[V\left(x_{2}\right)-V\left(x_{1}\right)\right]}\right)^{1 / 2}
$$

In particular, if $V=m \omega_{0}^{2}\left(x^{2}-b x^{4}\right) / 2$, show that the period of oscillations of amplitude a is

$$
T=\frac{2}{\omega_{0}} \int_{-a}^{a} \frac{d x}{\left(a^{2}-x^{2}\right)^{1 / 2}\left[1-b\left(a^{2}+x^{2}\right)\right]^{1 / 2}}
$$

