Course 141: MECHANICS

Problem Set 10

Date Issued: January 30, 2008

1. The general solution of the equation of motion of a simple harmonic oscillator can be written in 3 different forms:

 $x = a\cos\omega t + b\sin\omega t; \quad x = A\cos(\omega t - \theta); \quad x = \mathbf{Re} \ (Ce^{i\omega t})$

A harmonic oscillator of angular frequency 2 s^{-1} is initially at x = -3 m with $\dot{x} = 8$ m s^{-1} . Write the solution in each of the three forms. Find the first time at which x = 0 and $\dot{x} = 0$. Sketch the solution.

- 2. When a mass is suspended from a spring, the equilibrium length is increased by 50 mm. Given that the mass is then given a blow which starts it moving vertically at 200 mm s^{-1} , find the period and amplitude of the resulting oscillations, assuming neglidgible damping.
- 3. Find, which of the following forces are conservative, and for those that are find the corresponding potential energy function. Here a, b are constants, \vec{a} is a constant vector:
 - (a) $F_x = ax + by^2$, $F_y = az + 2bxy$, $F_z = ay + bz^2$
 - (b) $F_x = ay$, $F_y = az$, $F_z = ax$
 - (c) $F_r = 2ar\sin\theta\sin\phi$, $F_\theta = ar\cos\theta\sin\phi$, $F_\phi = ar\cos\phi$
 - (d) $\vec{F} = \vec{a} \times \vec{r}$
 - (e) $\vec{F} = r\vec{a}$
 - (f) $\vec{F} = \vec{a}(\vec{a} \cdot \vec{r})$
- 4. Given that the force is as in Problem 3(a), evaluate the work done in taking a particle from the origin to the point (1,1,0)
 - (a) by moving first along the x-axis and the parallel to the y-axis;
 - (b) by going in a straight line.

Verufy that the result in each case is equal to minus the change in the potential energy function.

5. Evaluate the force corresponding to the potential energy function $V(\vec{r}) = cz/r^3$, where c is a constant. Write your answer in vector notations, and also in spherical polar coordinats, and verify that it satisfies $\vec{\nabla} \times \vec{F} = 0$.