Course 141: MECHANICS

Problem Set 1

Date Issued: October 24, 2007 Date Due: October 31, 2007

Each problem counts 5 points

- 1. Show that is $|\vec{A} \vec{B}| = |\vec{A} + \vec{B}|$, then $\vec{A} \perp \vec{B}$.
- 2. Given two vectors \vec{A} , 5 units long and \vec{B} , 9 units long. What is the angle ϕ between \vec{A} and \vec{B} when $|\vec{A} + \vec{B}| = 7$?
- 3. Consider two points $\vec{r_1}$ and $\vec{r_2}$ separated by the distance $r = |\vec{r_1} \vec{r_2}|$. Find the vector \vec{R} from the origin to a point on the line between $\vec{r_1}$ and $\vec{r_2}$ at a distance kr from the point $\vec{r_1}$, where k is some number such that $0 \le k \le 1$. State your answer in therms of $k, \vec{r_2}$ and $\vec{r_2}$ only. Sketch the vectors $\vec{r_1}, \vec{r_2}$ and \vec{R} .
- 4. A particle has the trajectory (in meters with t in seconds)

$$\vec{r}(t) = \cos t \hat{i} + \frac{t^2}{1+t} \hat{j}$$

- (a) Sketch the trajectory for $t \geq 0$.
- (b) What is the maximum speed of the particle?
- (c) What is the maximum accelaration of the particle?
- 5. A particle, moving in one dimension, has acceleration as shown below. The particle starts from rest at t = 0.
 - (a) Write down the particle's acceleration, a(t), for $0 \le t \le 1$, $1 \le t \le 2$ and t > 2 seconds.
 - (b) Find the particle's velocity, v(t), for any $t \ge 2$ seconds.