## Course 141: MECHANICS

## Problem Set 1

## Date Issued: October 24, 2007 Date Due: October 31, 2007

## Each problem counts 5 points

1. Show that is $|\vec{A}-\vec{B}|=|\vec{A}+\vec{B}|$, then $\vec{A} \perp \vec{B}$.
2. Given two vectors $\vec{A}, 5$ units long and $\vec{B}, 9$ units long. What is the angle $\phi$ between $\vec{A}$ and $\vec{B}$ when $|\vec{A}+\vec{B}|=7$ ?
3. Consider two points $\vec{r}_{1}$ and $\vec{r}_{2}$ separated by the distance $r=\left|\vec{r}_{1}-\vec{r}_{2}\right|$. Find the vector $\vec{R}$ from the origin to a point on the line between $\vec{r}_{1}$ and $\vec{r}_{2}$ at a distance $k r$ from the point $\vec{r}_{1}$, where $k$ is some number such that $0 \leq k \leq 1$. State your answer in therms of $k, \vec{r}_{2}$ and $\vec{r}_{2}$ only. Sketch the vectors $\vec{r}_{1}, \vec{r}_{2}$ and $\vec{R}$.
4. A particle has the trajectory (in meters with $t$ in seconds)

$$
\vec{r}(t)=\cos t \hat{i}+\frac{t^{2}}{1+t} \hat{j}
$$

(a) Sketch the trajectory for $t \geq 0$.
(b) What is the maximum speed of the particle?
(c) What is the maximum accelaration of the particle?
5. A particle, moving in one dimension, has acceleration as shown below. The particle starts from rest at $t=0$.
(a) Write down the particle's acceleration, $a(t)$, for $0 \leq t \leq 1,1 \leq t \leq 2$ and $t>2$ seconds.
(b) Find the particle's velocity, $v(t)$, for any $t \geq 2$ seconds.

