
Course 161/2S3, Solutions to Trinity Term paper 2000

1. (117)10 = (75)16 = (1110101)2. The HEX pattern for this is (using 2’s
complement)

ffffff8b

(181.72)10 = (b5.b8)16 = (10110101.101110000)2. The HEX pattern for
this is (using IEEE)

4335b800

(fa.3c)16 = (11111010.00111100)2 = (250.234375)10. The HEX pattern
for this is (using IEEE)

437a3c00

2. • double fofx(double x)

{

return((3*x*cos(-x)+sqrt(x))/(sqrt(x)*(2*x+1)));

}

• double mac(double x, int n)

{

int k;

double sum=0.0;

for(k=1; k<=n; k++)

{

sum += pow(-1,k-1)*pow(x,2*k-1)/(2*k-1);

}

return(sum);

}

• void abs_array(int n, double x[])

{

int i;

for(i=0; i<n; i++)

{

x[i] = fabs(x[i]);

}

}

3. (a) (((x ∗ y)/i) ∗ j) → 1.5
(b) ((i + j) == (2 ∗ j)) → FALSE(= 0)
(c) (((x > y)&&(y > j))||(i < 3)) → FALSE(= 0)

Describe the memory map:

byte address variable value in memory variable name

32 x[1]

24 x[0]

20 j-p

12 j

4 p

0 i

Trace what happens (you could just fill these values into the memory
map you have already drawn:

byte address variable value in memory variable name

32 /2.0 2.5 x[1]

24 /1.0 2.5 x[0]

20 /24MEM 32MEM j-p

12 j

4 2.5 p

0 /0 /1 2 i

4. The proof that the error is O(h3) is in the notes, as is the statement
of the extended trapezoidal rule and the further derivation of the error

for n steps of size h =
b − a

n
.

You should have derived

error term =
1

12

(b − a)3

n2
max(f ′′

∣

∣

∣

b

a
)

Then for f(x) =
1

x2
, max(f ′′)b

a
= max

(

6

x4

)x=3

x=1

= 6. Therefore

1

12

(3 − 1)3

n2
6 < 10−5

4

n2
< 10−5

n2 > 4 × 105

n > 632.45

Therefore n = 633 sub-intervals are needed.

5. The 2 coupled equations are

dx

dt
= z(t)

dz

dt
= −x(t)

Define the Euler algoritm: to solve the equation
dy

dx
= f(x, y), the Euler

algorithm is

y0 = A

yn+1 = yn + hf(xn, yn)

For this problem:
t1 ie t = 0.1

x1 = x0 + hz0 = 1.0

z1 = z0 + h(−x0) = −0.1

t2 ie t = 0.2

x2 = x1 + hz1 = 0.99

z2 = z1 + h(−x1) = −0.2

t3 ie t = 0.3

x3 = x2 + hz2 = 0.97

z3 = z2 + h(−x2) = −0.299

t4 ie t = 0.4
x4 = x3 + hz3 = 0.9401

6. The main points are

• Call by value pass values of variables to functions. Call by refer-
ence uses pointers to pass the address of variables in main to the
function

• Call by value results in a local copy in the function, call by refer-
ence does not result in a local copy

• To return a result, or change the value of a variable in the main

program requires a return statement when using call by reference.
This can be accomplished without a return statement using call
by reference.

void swap(int *p, int *q)

{

int tmp;

tmp = *p;

*p = *q;

*q = tmp;

}

7. Main points

• draw the picture as given in the notes

• explain (briefly) the proceedure as represented in the picture

• method arises from a Taylor series expansion ie f(x+ δ) = f(x)+
δf ′(x) + . . .

• restricting to the first 2 terms ⇒ δ = −f(x)/f ′(x)

• signal for a root at x is δ = 0 and f(x) = 0.

• Newton Raphson algorithm is xn+1 = xn + δ

The proof of quadratic convergence is in the notes (referred to as a
recurrence relation). The 2 roots are x = 2.303 and x = −1.303 (you
should show workings for these results).

8. #include <stdio.h>

#include <math.h>

typedef struct {

double re;

double im;

} complex;

complex multiply_cmplx(complex a, complex b);

complex divide_cmplx(complex a, complex b)

main()

{

complex x,y, x_times_y, x_over_y;

printf("enter the real and imaginary parts of x\n");

if (scanf ("%lf %lf", &x.re, &x.im) != 2)

{

printf("error - try again");

exit(1);

}

printf("enter the real and imaginary parts of y\n");

if (scanf ("%lf %lf", &y.re, &y.im) != 2)

{

printf("error - try again");

exit(1);

}

x_time_y = multiply_cmplx(x,y);

x_over_y = divide_cmplx(x,y);

/* Print the result */

printf("the product is %.2lf + %.2lf\nthe quotient is %.2lf + %.2lf\n ",

x_times_y.re, x_times_y.im, x_over_y.re, x_over_y.im);

}

complex multiply_cmplx(complex a, complex b)

{

complex product;

product.re = (a.re*b.re - a.im*b.im);

product.im = (a.re*b.im + a.im*b.re);

return product;

}

complex divide_cmplx(complex a, complex b)

{

complex quotient;

quotient.re = (a.re*b.re+a.im*b.im)/(b.re*b.re + b.im*b.im);

quotient.im = (a.im*b.re - a.re*b.im)/(b.re*b.re + b.im*b.im);

return quotient;

}

