Course 161/2S3, Solutions to Trinity Term paper 2000

1. $(117)_{10}=(75)_{16}=(1110101)_{2}$. The HEX pattern for this is (using 2 's complement)

$$
f f f f f f 8 b
$$

$(181.72)_{10}=(b 5 . b 8)_{16}=(10110101.101110000)_{2}$. The HEX pattern for this is (using IEEE)
$4335 b 800$
$(\text { fa.3c })_{16}=(11111010.00111100)_{2}=(250.234375)_{10}$. The HEX pattern for this is (using IEEE)

$$
437 a 3 c 00
$$

2. - double fofx (double x)
\{
return $((3 * x * \cos (-x)+\operatorname{sqrt}(x)) /(\operatorname{sqrt}(x) *(2 * x+1)))$;
\}

- double mac(double x, int n)
\{
int k;
double sum=0.0;
for (k=1; k<=n; k++)
\{ sum $+=\operatorname{pow}(-1, \mathrm{k}-1) * \operatorname{pow}(\mathrm{x}, 2 * \mathrm{k}-1) /(2 * \mathrm{k}-1)$; \} return(sum);
\}
- void abs_array(int n, double $x[]$)
\{ int i; for $(i=0 ; i<n ; i++)$
\{

```
                x[i] = fabs( x[i] );
```

```
    }
}
```

3. (a) $(((x * y) / i) * j) \rightarrow 1.5$
(b) $((i+j)==(2 * j)) \rightarrow \operatorname{FALSE}(=0)$
(c) $(((x>y) \& \&(y>j)) \|(i<3)) \rightarrow \operatorname{FALSE}(=0)$

Describe the memory map:

byte address 32	variable value in memory	variable name $\mathrm{x}[1]$
24		$\mathrm{x}[0]$
20		$\mathrm{j}-\mathrm{p}$
12		j
4		p
0		i

Trace what happens (you could just fill these values into the memory map you have already drawn:

byte address 32	variable value in memory 24.02 .5	variable name $\mathrm{x}[1]$
24	1.02 .5	$\mathrm{x}[0]$
20	$24_{\text {MEM }} 32_{\text {MEM }}$	$\mathrm{j}-\mathrm{p}$
12		j
4	2.5	p
0	$\emptyset \nmid 2$	i

4. The proof that the error is $\mathcal{O}\left(h^{3}\right)$ is in the notes, as is the statement of the extended trapezoidal rule and the further derivation of the error for n steps of size $h=\frac{b-a}{n}$.

You should have derived

$$
\text { error term }=\frac{1}{12} \frac{(b-a)^{3}}{n^{2}} \max \left(\left.f^{\prime \prime}\right|_{a} ^{b}\right)
$$

Then for $f(x)=\frac{1}{x^{2}}, \max \left(f^{\prime \prime}\right)_{a}^{b}=\max \left(\frac{6}{x^{4}}\right)_{x=1}^{x=3}=6$. Therefore

$$
\begin{aligned}
\frac{1}{12} \frac{(3-1)^{3}}{n^{2}} 6 & <10^{-5} \\
\frac{4}{n^{2}} & <10^{-5} \\
n^{2} & >4 \times 10^{5} \\
n & >632.45
\end{aligned}
$$

Therefore $n=633$ sub-intervals are needed.
5. The 2 coupled equations are

$$
\begin{aligned}
& \frac{d x}{d t}=z(t) \\
& \frac{d z}{d t}=-x(t)
\end{aligned}
$$

Define the Euler algoritm: to solve the equation $\frac{d y}{d x}=f(x, y)$, the Euler algorithm is

$$
\begin{aligned}
y_{0} & =A \\
y_{n+1} & =y_{n}+h f\left(x_{n}, y_{n}\right)
\end{aligned}
$$

For this problem:
t_{1} ie $t=0.1$

$$
\begin{aligned}
x_{1} & =x_{0}+h z_{0}=1.0 \\
z_{1} & =z_{0}+h\left(-x_{0}\right)=-0.1
\end{aligned}
$$

t_{2} ie $t=0.2$

$$
\begin{aligned}
x_{2} & =x_{1}+h z_{1}=0.99 \\
z_{2} & =z_{1}+h\left(-x_{1}\right)=-0.2
\end{aligned}
$$

t_{3} ie $t=0.3$

$$
\begin{aligned}
x_{3} & =x_{2}+h z_{2}=0.97 \\
z_{3} & =z_{2}+h\left(-x_{2}\right)=-0.299
\end{aligned}
$$

t_{4} ie $t=0.4$

$$
x_{4}=x_{3}+h z_{3}=0.9401
$$

6. The main points are

- Call by value pass values of variables to functions. Call by reference uses pointers to pass the address of variables in main to the function
- Call by value results in a local copy in the function, call by reference does not result in a local copy
- To return a result, or change the value of a variable in the main program requires a return statement when using call by reference. This can be accomplished without a return statement using call by reference.

```
void swap( int *p, int *q)
{
    int tmp;
    tmp = *p;
    *p = *q;
    *q = tmp;
}
```

7. Main points

- draw the picture as given in the notes
- explain (briefly) the proceedure as represented in the picture
- method arises from a Taylor series expansion ie $f(x+\delta)=f(x)+$ $\delta f^{\prime}(x)+\ldots$
- restricting to the first 2 terms $\Rightarrow \delta=-f(x) / f^{\prime}(x)$
- signal for a root at x is $\delta=0$ and $f(x)=0$.
- Newton Raphson algorithm is $x_{n+1}=x_{n}+\delta$

The proof of quadratic convergence is in the notes (referred to as a recurrence relation). The 2 roots are $x=2.303$ and $x=-1.303$ (you should show workings for these results).
8. \#include <stdio.h> \#include <math.h>
typedef struct \{ double re; double im; \} complex;
complex multiply_cmplx (complex a, complex b);
complex divide_cmplx (complex a, complex b)
main()
\{
complex x,y, x_times_y, x_over_y;
printf("enter the real and imaginary parts of $x \backslash n ")$;
if (scanf ("\%lf \%lf", \&x.re, \&x.im) != 2)
\{
printf("error - try again");
exit(1);
\}
printf("enter the real and imaginary parts of $y \backslash n ")$;
if (scanf ("\% lf \%lf", \&y.re, \&y.im) != 2)
\{
printf("error - try again");
exit(1);
\}
x_time_y = multiply_cmplx (x, y);

```
    x_over_y = divide_cmplx(x,y);
    /* Print the result */
    printf("the product is %.2lf + %.2lf\nthe quotient is %.2lf + %.2lf\n ",
                            x_times_y.re, x_times_y.im, x_over_y.re, x_over_y.im );
}
complex multiply_cmplx(complex a, complex b)
{
    complex product;
    product.re = (a.re*b.re - a.im*b.im);
    product.im = (a.re*b.im + a.im*b.re);
    return product;
}
complex divide_cmplx(complex a, complex b)
{
    complex quotient;
    quotient.re = (a.re*b.re+a.im*b.im)/(b.re*b.re + b.im*b.im);
    quotient.im = (a.im*b.re - a.re*b.im)/(b.re*b.re + b.im*b.im);
    return quotient;
}
```

