Then the elements of the array are

Chapter 6

A bit more C

6.1 Vectors \& Matrices in C

An N -component vector is represented by a 1-dimensional array with N entries.

Example 3 -d vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$
is represeneted by

float $x[3]$;

or

\#define N 3

.
main()
\{

```
        float x[N];
```

\}

$$
\begin{array}{rll}
\mathrm{x}[0] & \leftrightarrow & x_{1} \\
\mathrm{x}[1] & \leftrightarrow & x_{2} \\
\mathrm{x}[2] & \leftrightarrow & x_{3}
\end{array}
$$

An $\mathrm{N} \times \mathrm{M}$ matrix is represented by a $2-\mathrm{D}$ array.
Example if $\mathbf{x}=\left(\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23}\end{array}\right)$
is represeneted by
float $x[2][3]$;
or
\#define N 3
\#define M 3
main()
\{
float $x[N][M]$;
\}

Then the elements of the array are

$$
\begin{array}{rll}
\mathrm{x}[0][0] & \leftrightarrow & x_{11} \\
\mathrm{x}[0][1] & \leftrightarrow & x_{12} \\
\mathrm{x}[0][2] & \leftrightarrow & x_{13} \\
\mathrm{x}[1][0] & \leftrightarrow & x_{21} \\
\mathrm{x}[1][1] & \leftrightarrow & x_{22} \\
\mathrm{x}[1][2] & \leftrightarrow & x_{23}
\end{array}
$$

The elements of vectors and matrices (ie arrays) can be naturally accessed by for-loops

6.2 Vector Multiplication (and the dot product)

The elements of a vector can be easily accessed with a for-loop.

Example $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$
 $x . y=\mathbf{x}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=z$ in $\mathrm{C}:$

main()

\{
float $\mathrm{x}[3], \mathrm{y}[3], \mathrm{z}$;
int i;
$z=0.0$;
for (i=0;i<3;i++)
\{
$z=z+x[i] * y[i] ;$
\}
\}
$\begin{array}{lll} & i=0: & z=0+x[0] * y[0] \\ \text { trace what happens: } & i=1: & z=z+x[1] * y[1] \\ & i=2: & z=z+x[2] * y[2]\end{array}$
ie for-loop saves you lots of writing especially if say x and y are large.

6.3 Matrix Addition

Say we want to add A[2][2], B[2][2]

Example

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
& C=A+B=\left(\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right),
\end{aligned}
$$

in C code we need to access the corresponding elements of A and B and add them. A, B matrices \Rightarrow rows $\&$ columns $\Rightarrow 2$ indices to identify any element.
So in C:

main()

\{
float A[2] [2] , B[2] [2], C[2] [2] ;
int i,j;
for (i=0;i<2;i++)
\{
for ($\mathrm{j}=0 ; \mathrm{j}<2 ; \mathrm{j}++$)
\{
$C[i][j]=A[i][j]+B[i][j]$;
\}
\}
\}
trace what happens: EXAMPLE

6.4 Passing 1-D arrays to functions

Re-write p03.c with the dot and cross products done in functions.
Dot product:
2 vectors
\Downarrow
1 number out
\Downarrow
2 arguments to function type- double
the function return a number to main
there for we have the function

double dotproduct(double $A[]$, double $B[])$;

The [] tells the compiler to expect the inputs to be 1-D arrays. -see hand out for rest of function.
Cross product: 2 vectors 1 vector out
This is not like the usual functions we have seen where 1 number is returned
Therefore we cannot use the return statement instead the C syntax is:
void crossproduct(double C[],double A[], double B[]);

Note from handout... both dotprod and cross prod are called from main kie
dotprod=dotproduct (x, y) ;
crossproduct ($\mathrm{z}, \mathrm{x}, \mathrm{y}$) ;
ie the inputs are the array names (pointers)
We are really passing the address in memory of each vector.

$$
\begin{array}{ccc}
\mathrm{x} & \leftrightarrow & \& x[0] \\
\mathrm{y} & \leftrightarrow & \& y[0] \\
\mathrm{z} & \leftrightarrow & \& z[0]
\end{array}
$$

program will work with
dotprod=dotproduct (
\&x[0],
\&y[0]);
or
dotprod=dotproduct(x,y);

6.5 Functions and Arrays of Dim > 1

An array:
int $a[3][5]$;
has 2 dimensions (corresponds to a matrix with rows and columns). or

$$
\text { int } \mathrm{a}[3][1][5]
$$

is a 3 -dimensional array with $3^{*} 1^{*} 5$ entries.

Passing a 2-dim (or 3-dim ...) array to a function is a little more complicated than the 1 dim case.
Because:
The array name by itself eg a is equivalent to \&a $[0$
but now we eg
int a[3] [5] ;
$\& \mathrm{a}[0]$ is a pointer to an array of 4 integers. ie
$\mathrm{a}[0][0], \mathrm{a}[0][1], \mathrm{a}[0][2], \mathrm{a}[0][3], \mathrm{a}[0][4]$. So in this case the base of the array is more correctly given by
\&a[0][0] and not just a.
Therefore to pass a multidimensional array using just its name in the main progeam, the function must know the size of all other "columns"

SEE MATRIX ADDITION HANDOUT.

6.6 Matrix Multiplication

This is a bit more complicated then addition as we need to use a third forloop.

```
Example
\[
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
C=A B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right),
\end{gathered}
\]
in C :
main()
\{
float \(\mathrm{a}[2]\) [2], \(\mathrm{b}[2]\) [2], \(\mathrm{c}[2]\) [2];
int \(\mathrm{i}, \mathrm{j}, \mathrm{k}\);
for ( \(\mathrm{i}=0\); \(\mathrm{i}<2\); \(\mathrm{i}++\) )
\{
```


for ($\mathrm{j}=0$; $\mathrm{j}<2 ; \mathrm{j}++$)

```
\{
c [i] [j] \(=0\);
for ( \(k=0 ; k<2 ; k++\) )
\{
\(c[i][j]=c[i][j]+a[i][k] * b[k][j] ;\)
\}
```

```
\}
\}
\}
```

