
Chapter 6

A bit more C

6.1 Vectors & Matrices in C

An N-component vector is represented by a 1-dimensional array with N en-

tries.

Example 3-d vector x = (x1, x2, x3)

is represeneted by

float x[3];

or

#define N 3

.

.

.

main()

{

float x[N];

}

50

Then the elements of the array are

x[0] ↔ x1

x[1] ↔ x2

x[2] ↔ x3

An N× M matrix is represented by a 2-D array.

Example if x =

(

x11 x12 x13

x21 x22 x23

)

is represeneted by

float x[2][3];

or

#define N 3

#define M 3

.

.

.

main()

{

float x[N][M];

.

}

Then the elements of the array are

x[0][0] ↔ x11

x[0][1] ↔ x12

x[0][2] ↔ x13

x[1][0] ↔ x21

x[1][1] ↔ x22

x[1][2] ↔ x23

51



The elements of vectors and matrices (ie arrays) can be naturally accessed

by for-loops

6.2 Vector Multiplication (and the dot prod-

uct)

The elements of a vector can be easily accessed with a for-loop.

Example x = (x1, x2, x3) y = (y1, y2, y3)

x.y = x = x1y1 + x2y2 + x3y3 = z in C:

main()

{

float x[3],y[3],z;

int i;

z=0.0;

for(i=0;i<3;i++)

{

z=z+x[i]*y[i];

}

}

trace what happens:

i=0: z=0+x[0]*y[0]

i=1: z=z+x[1]*y[1]

i=2: z=z+x[2]*y[2]

ie for-loop saves you lots of writing especially if say x and y are large.

6.3 Matrix Addition

Say we want to add A[2][2], B[2][2]

52

Example

A =

(

a11 a12

a21 a22

)

, B =

(

b11 b12

b21 b22

)

C = A + B =

(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

,

in C code we need to access the corresponding elements of A and B and

add them. A, B matrices ⇒ rows & columns ⇒ 2 indices to identify any

element.

So in C:

main()

{

float A[2][2],B[2][2],C[2][2];

int i,j;

for(i=0;i<2;i++)

{

for(j=0;j<2;j++)

{

C[i][j]=A[i][j]+B[i][j];

}

}

}

trace what happens: EXAMPLE

6.4 Passing 1-D arrays to functions

Re-write p03.c with the dot and cross products done in functions.

Dot product: 2 vectors 1 number out

⇓ ⇓
2 arguments to function type- double

the function return a number to main

53



there for we have the function

double dotproduct(double A[], double B[]);

The [] tells the compiler to expect the inputs to be 1-D arrays.

-see hand out for rest of function.

Cross product: 2 vectors 1 vector out

This is not like the usual functions we have seen where 1 number is returned.

Therefore we cannot use the return statement instead the C syntax is:

void crossproduct(double C[],double A[], double B[]);

Note from handout... both dotprod and cross prod are called from main kie

dotprod=dotproduct(x,y);

crossproduct(z,x,y);

ie the inputs are the array names (pointers)

We are really passing the address in memory of each vector.

x ↔ &x[0]

y ↔ &y[0]

z ↔ &z[0]

program will work with

dotprod=dotproduct(\&x[0],\&y[0]);

or

dotprod=dotproduct(x,y);

54

6.5 Functions and Arrays of Dim > 1

An array:

int a[3][5];

has 2 dimensions (corresponds to a matrix with rows and columns).

or

int a[3][1][5];

is a 3-dimensional array with 3*1*5 entries.

Passing a 2-dim (or 3-dim ... ) array to a function is a little more

complicated than the 1 dim case.

Because:

The array name by itself eg a is equivalent to &a[0]

but now we eg

int a[3][5];

&a[0] is a pointer to an array of 4 integers. ie

a[0][0], a[0][1], a[0][2], a[0][3], a[0][4]. So in this case the base of the array is

more correctly given by

&a[0][0] and not just a.

Therefore to pass a multidimensional array using just its name in the main

progeam, the function must know the size of all other ”columns”

SEE MATRIX ADDITION HANDOUT.

6.6 Matrix Multiplication

This is a bit more complicated then addition as we need to use a third for-

loop.

55



Example

A =

(

a11 a12

a21 a22

)

, B =

(

b11 b12

b21 b22

)

C = AB =

(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)

,

in C:

main()

{

float a[2][2],b[2][2],c[2][2];

int i,j,k;

for(i=0;i<2;i++)

{

for(j=0;j<2;j++)

{

c[i][j]=0;

for(k=0;k<2;k++)

{

c[i][j]=c[i][j]+a[i][k]*b[k][j];

}

}

}

}

56


