
Contents

1 Root Finding 4

1.1 Bracketing and Bisection . 5

1.1.1 Finding the root numerically 5

1.1.2 Pseudo BRACKET code 7

1.1.3 Drawbacks . 8

1.1.4 Tips for success with Bracketing & Bisection 9

1.1.5 Virtues . 9

1.1.6 Pseudocode to Bisect an interval until a root is found . 10

1.2 Root Finding – Newton-Raphson method 11

1.2.1 Specific Code x2 − 4 15

1.2.2 A word on the roots of Polynomials 16

1

Hilary Term

Summary of Numerical Analysis for this term

• Root finding; maxima and minima

• Ordinary differential equations (ODE)

• Numerical integration techniques

• Matrices & vectors – addition, multiplication, Gaussian elimination,

etc

Sources of error in numerical calculation

Real World

↓

Mathematical Model

↓

Computer

Solving Problems

Using

integration

differentiation

matrix determinants

.

2

ANALYTICALLY: the ”pen and paper” method - you can find the exact

solution.

NUMERICALLY: use computational techniques to find a solution. It might

not be exact. Therefore it is important to understand and quantify errors.

3

Chapter 1

Root Finding

This is a basic computational task - to solve equations numerically.

ie. find a solution of

f(x) = 0

1 independent variable ie x implies a 1-dimensional problem ⇒ solve for

the roots of the equation.

Definition If α is the root of a function f(x) then f(α) = 0.

DRAWING

To find the root numerically

• find 2 values of x, say a & b, that BRACKET the root;

• decrease the interval [a, b] to converge on the solution.

4

This is known as Bracketing and Bisection.

1.1 Bracketing and Bisection

A root is BRACKETED in an interval (a, b) if f(a) and f(b) have opposite

signs.

DRAWING

f(a) < 0

f(b) > 0

}

→ a, b bracket a root

Between a and b, |f(x)| decreases until

f(x1) = 0

where x1 is a root of the function f(x).

1.1.1 Finding the root numerically

Given a function f(x) and an initial range x1 to x2

• Check for a root between x1 and x2

ie

f(x1) ∗ f(x2) < 0

5

IF true ⇒ there is a root in (x1, x2)

ELSE

expand the range and try again.

When the interval contains a root start BISECTING to converge on it.

BISECTING PROCEDURE:

• in some interval the function passes through zero because it changes

sign;

• evaluate function at interval MIDPOINT and examine its sign;

• use midpoint to replace whichever limit has same sign.

DRAWING

When to stop?

1. After a fixed number of bisection iterations eg 40

2. When you reach the ’CONVERGENCE CRITERIA’.

CONVERGENCE:

Computers use a fixed number of bits to represent floating point numbers.

So, while the function may ANALYTICALLY pass through zero, its COM-

PUTED (NUMERICAL) value may never be zero, for any floating point

argument.

• You must decide what accuracy on the root is attainable.

6

• A good guide: continue until interval is smaller than

ε
(|x1| + |x2|)

2

where ε = machine precision (≈ 10−12) and (x1, x2) = original interval

1.1.2 Pseudo BRACKET code

Choose initial interval (a, b)

Check

IF(f(a)*f(b)<0.0){

Call BISECTION CODE

}

ELSE IF(abs(f(a)) < abs(f(b)){

expand interval to the left

a=a+factor*(a-b)

}

ELSE{

expand interval to the right because abs(f(a)) > abs(f(b))

b=b+factor*(b-a)

}

re evaluate (f(a)*f(b)<0) and repeat til true.

factor - you choose between 1 - 2 to extend the range, by a

’little’.

DRAWING

7

1.1.3 Drawbacks

• It there are and EVEN number of roots in an interval, bisection won’t

find any ⇒ no sign change

DRAWING

• it can converge to a pole rather than a root

DRAWING

Because we only look at the sign of f(x) not |f(x)| appears like a root.

• Check |f(x)| of final answer, it should be small for a root, will be large

it a pole.

• there are faster converging methods

• doesn’t generalise to complex variables or several variables

8

1.1.4 Tips for success with Bracketing & Bisection

• Get an idea what the function looks like

• Good initial guess important

• check that |f(x)| ≈ 0 for x a root

1.1.5 Virtues

• If an initial bracket is found it will converge on the root-regardless of

interval size.

• easy to decide reliably when the approx is good enough

• converges reasonably quickly and independent of the function smooth-

ness.

9

1.1.6 Pseudocode to Bisect an interval until a root is

found

#define EPS 1e-12

double root(double f(double), double a, double b){

double m = (a+b)/2.0;

if(f(m)==0.0||fabs(b-a) <EPS){

return m;

}else if(f(a)*f(m)<0.0){

return root(f,a,m);

}else{

return root(f,m,b);

}

}

An aside on programming:

’C’ function ’root’ takes as its first argument a function → more precisely

this is a pointer to a function.

In ’C’ a function name by itself is treated as a pointer to that function.

cf. how ’C’ treat array names.

→ in ’root’ when we pass ’f’ we actually pass the address of ’f’

Calling ’root’ from ’main’

#include ...

10

.

.

.

double func_form(double);

double root(double f(double), double, double);

main()

{

.

.

.

/* find an interval bracketing a root */

/* (a,b) */

/* Now call ’root’ */

solution = root(func_form,a,b);

}

double func_form(double x)

{

return (x*x*x*x-7.0*x-3.0);

}

}

double root(....)

.

.

.

1.2 Root Finding – Newton-Raphson method

The Newton-Raphson method requires evaluation of

f(x)

11

and

f
′

(x) - the derivative at arbitrary points of x.

METHOD:

• extend tangent line at current pt. xi until it crosses zero

• set the next guess, xi+1 to abscissa of that zero crossing

DRAWING

Algebraically, the method derives from a Taylor series expression of a func-

tion, f about a point, x.

f(x + δ) ≈ f(x) + f
′

(x)δ +
f

′′

(x)

2!
δ2 +

f
′′′

(x)

3!
δ3

where

f
′

(x) - first derivative of f wrt x

f
′′

(x) - second derivative of f wrt x

f
′′′

(x) - third derivative of f wrt x

where δ is small and f is a well-behaved function, terms beyond the linear

term are unimportant. ie

f(x + δ) ≈ f(x) + f
′

(x)δ

So if there’s a root at (x + δ) say

f(x + δ) = 0 = f(x) + f
′

(x)δ

from this we get

δ = − f(x)

f
′ (x)

12

In words:

at x ⇒ know f(x), f
′

(x) if there is a root x + δ then

f(x + δ) = 0

and δ is the distance you move from x,

if f(x + δ) = 0 then

δ = −
f(x)

f
′(x)

by Taylor’s expansion

So if δ ∼ 0 then we’ve found a root at f(x) because f(x) ∼ 0.

Therefore the condition to find a root with Newton -Raphson (N-R) is

δ ∼ 0

⇒
f(x)

f
′(x)

∼ 0

Newton–Raphson Formula

If we have xi, how do we choose a new xi+1.

new guess = guess + δ

xi+1 = xi −
f(x)

f
′(x)

N-R can give ”grossly inaccurate, meaningless results”.

Consider

An initial guesses, far from the root so the search interval includes a local

max. or min.

⇒ Bad News because f
′

(x) = 0 at a local max or min.

DRAWING.

13

DRAWING 2.

So, Why use N-R?

It has good convergence.

Proof

If ε is the distance x to the true root, xtrue

Then at iteration step i

xi + εi = xtrue

xi+1 + εi+1 = xtrue

There for

xi+1 + εi+1 = xi + εi

xi+1 − xi = εi − εi+1

Using Taylor

−
f(xi)

f
′(xi)

= εi − εi+1

⇒ εi+1 = εi +
f(xi)

f
′(xi)

When a trial solution xi differs from the root by εi we can write

f(xi + εi) = 0 = f(xi) + εif
′

(xi) + ε2
i

f
′′

(xi)
2!

+ ...

= f(xi)

f
′
(xi)

+ εi +
ε2

i

2!
f

′′

(xi)

f
′
(xi)

+ ...

= f(xi)

f
′ (xi)

+ εi +
ε2

i

2!
f

′′

(xi)

f
′ (xi)

14

εi+1 = −
ε2

i

2

f
′′

(x)

f
′(x)

This is recurrence relation for derivations of the trial solution

⇒ N-R converges quadratically (ε2
i) *near the root*

this means it has a poor global solution but good local convergence.

�

The convergence criteria for Bracketing & Bisection is

εi+1 =
1

2
εi

Which is linear convergence.

This means: near a root, the number of significant digits approximation

doubles with each step.

Good tip:

Use the more stable ’bracketing and bisection’ to find a root, to ”polish up”

the solution with a few N-R steps.

Writing a program to solve a problem with N-R

We need f(x) and f
′

(x) from the user specific to the problem being solved

If you only get f(x) – could use N-R with a numerical approximation to the

derivative.

EXAMPLE

1.2.1 Specific Code x2 − 4

#include ...

#define xacc 1e-12

#define JMAX 20

main()

{

double x1,x2,fx,df,dx,rtn;

15

int j,i;

x1=1.0;

x2=2.5;

rtn=0.5*(x1+x2); /* first guess */

for(j=1;j<=JMAX;j++)

{

fx=rtn*rtn-4; /* (x*x-4) */

df=2.0*rtn;

dx=-fx/df;

rtn+=dx; /* x=x-fx/df */

/* x=x+delta */

/* x_i+1=x_i+delta */

if((x1-rtn)*(rtn-x2)<0.0){

printf("jumped outside of bounds");

exit(1);

}

if(fabs(dx)<xacc){

printf("found root after %d attempts at %lf \n",j,rtn);

exit(0);

}

}

printf("Error - exceeded max tries - no root");

}

1.2.2 A word on the roots of Polynomials

There are a number of methods – useful for most practical problems

Eg

Muller’s method

16

Laguerres method

Eigenvalue method

.

.

We don’t have time for these – any good Numerical Analysis book has them

...

Keep in mind, a real polynomial of degree ’n’ has ’n’ roots.

They can be real or complex, and might not be distinct.

If polynomial coeffs are real – complex roots in conjugate pairs

ie if x1 = a + bi is a root

then x2 = a − bi is also root

complex coeffs ⇒ unrelated complex roots.

Multiple roots, or closely spaced roots therefore it is most difficult for nu-

merical techniques eg

P (x) = (x − a)2

has a double real root at x=a.

Cannot bracket the root in the usual way, nor will N-R work well since func-

tion and derivative vanish at a multiple root.

N-R may work - but slowly since large roundoff can occur.

Need special techniques for this.

EXAMPLE

17

