
Chapter 9

Random Numbers

Can a deterministic machine such as a computer generate truly ”random”

numbers?

In fact what generally passes for random numbers are sequences of indepen-

dent random numbers, with a specified distribution.

Such sequences generated deterministically are often called ”psuedorandom”

or ”quasirandom”.

A good source on random numbers is:

Donald Knuth: ”The art of Computer Programming” Volume 2

74

9.1 Random Number Generators

Random numbers are frequently required

• initialising a system before simulation

• data encryption

• choosing the order in which experimental data is analysed, avoiding

bias

• rolling dice, shuffling cards

• ”Monte Carlo method” QM and QFT

The C system provides a random number generator

It is a function called rand()

generates random integers between [0, RAND_MAX], where RAND_MAX is sys-

tem dependent and defined in stdlib.h.

Therefore we need #include<stdlib.h> in programs using rand().

See the value of RAND_MAX by writing a program with

printf("%d\n",RAND_MAX)

you should get 2147483647 (ie 231 − 1)

In programming applications you might need to fill an array/matrix with

random numbers eg.

#include<stdio.h>

#include<stdlib.h>

#define N 10

main()

{

int ran_nums[N], i;

for(i=0;i<N;i++)

{

75

ran_nums[i]=rand();

printf("%d\n",ran_nums[i]);

}

}

This prints out 10 random numbers. Run this 100 times and you will still

get the exact same list of 10 numbers.

For most applications this isn’t good say we want 2 arrays of random num-

bers bu don’t want two identical arrays.

To understand why this happens we dissect the function.

rand() is a Linear congruential generator. This means that it generates

a sequence of ints I1, I2, I3, each between [0, RAND_MAX] using the

recurrence relation

Ij+1 = (aIj + c) mod m

for

m modulus: 0 < m : 232

a multiplier: 0 ≤ a < m : 1103515245

c increment: 0 ≤ c < m : 12345

The ”seed” is the initial I0 that starts the sequence.

Change the seed change the sequence.

m,a,c are chosen to maximise the sequence length, ie a very large number of

”random numbers” would have to be generated before repetition is observed.

to see the generator.

1. choose a value for the seed

2. intialise the generator with this seed

Eg

#include<stdio.h>

76

#include<stdlib.h>

#include<time.h>

#define N 10

main()

{

int a[N][N], i,j,seed;

seed=time(NULL);

srand(seed);

for(i=0;i<N;i++)

{

for(j=0;j<N;j++)

{

a[i][j]=rand();

printf("%d\n",a[i][j]);

}

}

}

Notes

time.h ⇒ a C library file

contains functions dealing with

date, time, internal clock,...

the function call

time(NULL)

returns the number of seconds since 1 Jan 1970.

Repeated calls to rand() generates all ints in [0,RAND_MAX] in a mixed up

order.

The value used as seed determines where in the sequence rand() starts

off.

Using ’time(NULL)’ as seed therefore every time the program runs the seed

77

is different which means a different list of numbers.

9.1.1 Quick recap

rand() generates a random number

srand() seeds the generator with an

integer value given by ’seed’

time(NULL) returns the

number of seconds since 01 Jan 1970

9.2 Non integer random numbers

We have seen that rand() generates random integer values.

How can we adapt this to get a real number between 0.0 and 1.0

We could

float x;

x= rand()/(RAND_MAX+1);

Now, say we want to generate lotto numbers?

These occur in a range 1-42 so we need to restrict the output of rand() to

ints in [1,42] from the range [0,RAND_MAX]

Therefore we use the modulus function ”%”

Recall

5%3 = 2

ie the remainder when 5 is divided by 3

Therefore we use the function

([rand()%42]+1)

78

which should generate nos in [1,42].

we need ’+1’ if rand()% 42=0

then rand()%42+1=1

and if rand()%42=41

then rand()%42+1=1

and

% is above + in preference table

⇒ % operation done first

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#define N 6

main()

{

int lotto[N], i;

seed=time(NULL);

srand(seed);

for(i=0;i<N;i++)

{

lotto[i]=rand()%42 +1;

printf("%d\n",lotto[i]);

}

}

Note: an alternative to rand()%42 +1 is

lotto[i]=1+ (int)(42.0+rand()/(RAND_MAX+1.0));

There are many other random number generators on the market.

See Numerical Recipes section 7 for discussion.

79

One simple variant is the ”Multiplication Congruential” algorithm:

Ij+1 = aIj (mod m)

a and m must be chosen carefully to maximise the length of the sequence I0,

I1, I2,...

Recommended:

a = 75 = 16807

m = 231 − 1

Note that aIj may produce a number requiring more than 32-bits.

So either write rand() using 64-bit in the function

or

use clever tricks to factorise large numbers to sums of smaller ones.

80

Mersenne Twister

The Mersenne twister is a pseudorandom number generator developed in

1997 by Makoto Matsumoto and Takuji Nishimura

It provides for fast generation of very high quality pseudorandom num-

bers, having been designed specifically to rectify many of the flaws found in

older algorithms.

There are at least two common variants of the algorithm, differing only in

the size of the Mersenne primes used. The newer and more commonly used

one is the Mersenne Twister MT 19937.

Mersenne Primes A Mersenne prime is a prime number that is one less

than a prime power of two. For example, 31 (a prime number) = 32-1 =

25 - 1, and 5 also a prime number, so 31 is a Mersenne prime; so is 7 = 8

- 1 = 23 - 1. On the other hand, 2047 = 2048 - 1 = 211 - 1, for example,

is not a prime, because although 11 is a prime (making it a candidate for

being a Mersenne prime), 2047 is not prime (it is divisible by 89 & 23).

Throughout modern times, the largest known prime number has very often

been a Mersenne prime.

More generally, Mersenne numbers (not necessarily primes, but candi-

dates for primes) are numbers that are one less than a prime power of two;

hence,

Mn = 2n − 1.

(most sources restrict the term Mersenne number to where n is prime as all

Mersenne primes must be of this form as seen below). It is currently un-

known whether there is an infinite number of Mersenne primes.

See http;\\www.mersenne.org.

MT 19937 has the following desirable properties:

• It was designed to have a colossal period of 219937 − 1 (the creators of

the algorithm proved this property). This period explains the origin

of the name: it is a Mersenne prime, and some of the guarantees of

81

the algorithm depend on internal use of Mersenne primes. In practice,

there is little reason to use larger ones.

• It has a very high order of dimensional equidistribution (compared to

linear congruential generator).

A bounded sequence sn, n = 1, 2, 3, . . . of real numbers is equidis-

tributed on an interval (a, b) precisely if for any subinterval (c, d) we

have

lim
n→∞

|s1, s2, . . . , sn ∩ (c, d)|
n

=
d − c

b − a

i.e. the proportion of terms falling in any subinterval is proportional

to the length of the subinterval. Note that this means, by default, that

there is negligible serial correlation between successive values in the

output sequence.

• It is faster than all but the most statistically unsound generators.

• It is statistically random in all the bits of its output, and passes the

stringent “Diehard tests”.

82

