
The condition number and perturbations

Suppose we want to look at the linear system

Ax = b

and suppose that we want to know how the solution changes as the RHS, b

changes. Consider two specific cases

Ax = b1

Ax = b2

then (assuming A is nonsingular)

x1 − x2 = A−1(b1 − b2),

so then the relative error in x2 is an approximation to x1 iven by

||x1 − x2||
||x1||

≤ ||A−1|| ||b1 − b2||
||x1||

.

It is a good idea to bound the error by something that doesn’t depend on the

solution. So, replace x1 in the RHS denominator. Noting ||A||||x1|| ≥ ||b1||,
write

1

||x1||
≤ ||A||

||b1||
and therefore

||x1 − x2||
||x1||

≤ ||A||||A−1|| ||b1 − b2||
||b1||

.

The quantity ||A||||A−1|| is the condition number. It depends only on the

matrix in the problem and not on the RHS but it appears on the RHS of the

equation above to amplify the relative change.

Definition: For a given matrix A ∈ Rn×n and a given matrix norm || · ||,
the condition number with respect to the given norm is

κ(A) = ||A||||A−1||.
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If A is singular then κ(A) = ∞, justified as follows.

Theorem: Let A ∈ An×n be given and singular. Then for any singular

matrix B ∈ Bn×n

1

κ(A)
≤ ||A − B||

||A|| .

Proof: We have that

1

κ(A)
=

1

||A||||A−1||

=
1

||A||

(

1
max
x6=0

||A−1x||
||x||

)

≤ 1

||A||

(

1
||A−1x||

||x||

)

≤ 1

||A||

( ||Ay||
||y||

)

,

where y ∈ Rn is arbitrary. Let y be a nonzero vector such that By = 0 since

B is singular we know such things exist. Then

1

κ(A)
≤ ||(A − B)y||

||A||||y|| ≤ ||(A − B)||||y||
||A||||y|| =

||(A − B)||
||A||

completing the proof.

This tells us that if A is close to a singular matrix then the reciprocal

of the condition number is near zero and then κ(A) must be large. So, the

condition number can be used as a measure of how close a matrix is to being

singular. We have seen how solving a system that is nearly singular can lead

to large errors.

You know that solutions of the system Ax = b are affected by rounding

error and while each occurrance is small the cumulative effect (if n is large)

can be catastrophic and produce meaningless results.

Theorem (the effects of perturbation in n): Let A ∈ Rn×n and b ∈ Rn

given and define x ∈ Rn the solution of the linear system Ax = b. Let

δb ∈ Rn a small perturbation of b and define x + δx ∈ Rn as the solution of
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the systme A(x + δx) = (b + δb). Then

||δx||
||x|| ≤ κ(A)

||δb||
||b|| .

Proof: Have Ax = b and A(x + δx) = (b + δb) so Aδx = δb. Thus

δx = A−1δb ⇒ ||δx|| ≤ ||A−1||||δb||

so that
||δx||
||x|| ≤ ||A||||A−1||||δb||

||A||||x||
and using ||A||||x|| ≥ ||b|| and the definition of the condition number gives

||A||||A−1||||δb||
||A||||x|| ≤ κ(A)

||δb||
||b||

completing proof.

The theorem demonstrates that the effects of perturbations of the prob-

lem on the end result are amplified by the condition number. With an ill-

conditioned matrix (large κ) a small change in the data can mean a large

change in the solution. This can also be expressed using the residual of the

solution. If xc is the computed solution then the residual r is the amount by

which xc fails to solve the problem, i.e. r = b − Axc. Although r = 0 means

xc the exact solution it isn’t the case that r small means xc a good solution.

Theorem: Let A ∈ Rn×n nonsingular and b ∈ Rn known and xc ∈ Rn the

computed solution of Ax = b then

||x − xc||
||x|| ≤ κ(A)

||r||
||b||

Proof: as exercise

Theorem: Let A ∈ Rn×n given and nonsingular and EinRn×n a perturba-

tion of A. Let x ∈ Rn be the unique solution of Ax = b. If κ(A)||E|| < ||A||
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then the perturbed system (A + E)xc = b has a unique solution and

||x − xc||
||x|| ≤ θ

1 − θ
,

where

θ = κ(A)
||E||
||A|| .

Proof: as exercise

These perturbation results mean an computed (approximate) solution to

a linear algebra system is the exact solution to a nearby problem.

Theorem: Let A ∈ Rn×n given and nonsingular, b ∈ Rn and let x ∈ Rn be

the exact solution of Ax = b. Let xc be the computed solution then there

exists δb such that xc is the exact solution of the system

Axc = b + δb

Proof: Write

Axc = A(x + (xc − x)) = b + A(xc − x) = b + δb

and also

δb = A(xc − x) = Axc − b = r

completing the proof.
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Estimating the condition number

Although singular matrices occur infrequently in computations it can be

shown with mathematical rigour that all singular matrices are arbitrarily

close to a nonsingular matrix. In numerical computation the odds are high

that the rounding error can perturb the matrix away from being singular

but the resulting nonsingular matrix will be illconditioned. We know that

algorithms fail if a pivot is zero as happens with singular matrices but even

small pivots can mean the matrix is nearly singular.

As a rule of thumb: if the solution of a linear system changes by a lot when

the problem changes by a little then the matrix is probably ill-conditioned.

If would be useful to know this in advance and the condition number can

tell us. So can we (easily) determine it? No!. But we can estimate κ∞(A)

with approx the same numerical effort it takes to solve Ax = b once.

What’s the problem with computing κ(A)? While we can easily compute

||A||∞, it’s the ||A−1||∞ piece that is difficult. And of course if A is ill-

conditioned then a calculation of A−1 will be unreliable.

So, go back to the norm definition

||A−1||∞ =
max

x 6= 0
||A−1x||∞
||x||∞

and introduce ω ∈ Rn, ω 6= 0 such that

||A−1||∞ ≥ ||A−1ω||∞
||x||∞

Now set y = A−1ω and substitute in the condition number definition

κ∞(A) ≥ ||A||∞
||y||∞
||ω||∞

, (8.5)

true for any y ∈ Rn, y 6= 0, ω = Ay. The trick then is to find a y or ω that

maximes the RHS of eqn ??. Since the inequality holds for any y, ω = Ay

then the larger the RHS the better the estimate of κ.

A singular matrix has at least one zero eigenvalue and a matrix close
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to singular therefore has at least one eigenvalue close to zero. If y is the

eigenvector of a matrix A with the smallest eigenvalue then it follows that

||y||∞
||ω||∞

=
||y||∞
||Ay||∞

=
||y||∞
||λy||∞

= |λ|−1

and we can use this to maximise the value of the condition number.

Use a result from more advanced linear algebra that

y(i+1) = A−1/||y(i)||∞ i = 1, 2, . . .

a recursion relation that produces a series of vectors tending to the eigenvec-

tor with smallest eigenvalue as required. Since computing A−1 is so difficult

what one actually calculates are the solutions of

Ay(i+1) = y(i)/||y(i)||∞

given some initial y(i). E.g. LAPACK, a public-domain linear algebra (see for

example http://www.netlib.org/lapack/) uses 5 iterations of such a rela-

tion. Imagine you (or lapack) have done this, you can estimate the condition

number then using

κ∞(A) ≥ ||A||∞
||y(5)||∞
||Ay(5)||∞

=
αv

ω

with α = ||A||∞, v = ||y(5)||∞, ω = ||Ay(5)||∞. In fact the way this algorithm

is set up you can write

ω = ||Ay(5)||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

y(4)

||y(4)||∞

∣

∣

∣

∣

∣

∣

∣

∣

∞
= 1

and so

κ(A) = αv

.
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