
Chapter 8

Solutions of Systems of

Equations

A brief review

A vector x ∈ Rn is an ordered n-tuple of real numbers i.e. x = (x1, x2, . . . , xn)T

where the T denotes this should be considered a column vector.

A matrix, A ∈ Rm×n is a rectangular array of m rows and n columns.

A =









a11 a12 . . . a1n

...

am1 am2 . . . amn









Given a square matrix, A ∈ Rn×n if there exists a second square matrix

B ∈ Rn×n such that AB = BA = I then we say B is the inverse of A.

Note that not all sqaure matrices have an inverse. If A has an inverse it is

nonsingular and if it does not it is singular.

The following theorem summarises the conditions under which a matrix

is nonsingular and also connects them to the solvability of the linear systems

problem.

Theorem

Given a matrix A ∈ Rn×n the following statements are equivalent:

1. A is nonsingular

64

2. The columns of A form and independent set of vectors

3. The rows of A form an independent set of vectors

4. The linear system Ax = b has a unique solution for all vectors b ∈ Rn.

5. The homogeneous system Ax = 0 has only the trivial solution x = 0.

6. The determinant is nonzero.

Corollary

If A ∈ Rn×n is singular, then there exist infinitely many vectors x ∈ Rn,

x 6= 0 such that Ax = 0.

There are a number of special classes of matrices. In particular, tridiag-

onal matrices and (later) symmetric positive definite matrices.

A square matrix is lower (upper) triangular if all the elements above

(below) the main diagonal are zero. Thus

U =







1 2 3

0 4 5

0 0 6







is upper tringular, while

L =







1 0 0

2 3 0

4 5 0







is lower triangular.

Note at this stage you should review concepts of spanning, basis, dimension

and orthogonality as we will use these ideas soon in a discussion of eignvalues

and their computation.

Linear systems and Gaussian elimination

Have seen the solution of tridiagonal systems using Gaussian elimination.

Idea:

Tridiagonal matrix −→ Triangular matrix −→ Solve by back substitution.

65



This transformation is accomplished using only the row operations that pre-

serve the solution set, namely

1. Multiply a row by a nonzero scalar, c.

2. Interchange two rows

3. Multiply a row by a nonzero scalar, c and add the result to another

row.

Then for A′ the augmented matrix describing the system Ax = b a new

matrix A′′ which is derived from A′ by the operations above is row equivalent

and has the same solution set.

In this section we will derive a more general algorithm to deal with any

matrix (not just tridiagonal). The goal is to use the row operations above to

reduce A′ to a new augmented matrix A′′ = [U |c], where U is upper triangular

and Ux = c can be easily solved.

Essential features

Work down each column, eliminating (ie converting to zero) each component

below the main diagonal and modifying the rest of the corresponding row

appropriately.

Naive Gaussian algorithm for Ax=b

for i=1 to n-1

for j=i+1 to n

m = a(j,i)/a(i,i)

for k=i+1 to n

a(j,k) = a(j,k) - m*a(i,k)

endfor

b(j) = b(j) - m*b(i)

endfor

endfor

Programming notes:

The outermost loop (the i loop) ranges over the columns of the matrix; the

66

last column is skipped because we don’t need to perform any eliminations

there (since there are no elements below the diagonal). Note that elimination

on a non-square matrix would require this last column. The j loop ranges

down the ith column, below the diagonal (hence j goes from i+1 to n). First

compute the multiplier, m for each row, to eliminate the aji element. Note

that previous values are overwritten and the computation that makes aji

zero isn’t done. In this loop also the right-hand side is modified. The k loop

ranges across the jth row starting after the ith column. modifying elements

to reflect the elimination of aji.

Note the algorithm doesn’t create or store the zeroes in the lower trian-

gular half of A. This is ok because we only need the upper triangular part to

solve the equation. What if you have another system of equations with the

same coefficient matrix you need a method that saves this information - LU

decomposition.

Back-substitution for Ax=b

x(n) = b(n)/a(n,n)

for i=n-1 to 1

sum = 0

for j=i+1 to n

sum = sum + a(i,j)*x(j)

endfor

x(i) = (b(i) - sum)/a(i,i)

endfor

Programming notes:

This algorithm moves back up the diagonal, computing the xi in turn. I.e.

xi =
1

aii

(

bi −
n
∑

j=i+1

aijxj

)

67



to solve the triangular system. The j loop is accumulating the summation

term in the equation above. Notice that when the multiplier is computed it

requires division by the current diagonal element. If this is zero the algorithm

fails. But this does not imply the matrix is singular rather that the algorithm

is deficient.

In this regard the diagonals are called pivots and the solution, swapping

rows to avoid a zero is called pivoting.

• Partial pivoting: only entries in the same column are considered.

The most common solution and we will discuss it below.

• Complete pivoting: uses the current column but also all other columns.

More stable but more expensive.

Partial pivoting

An outline algorithm has the form:

• consider the ith column of the matrix. Search the portion of the ith col-

umn including and below the diagonal to find the element with largest

absolute value. Let p is the row index of this element.

• Interchange rows i and p.

• Proceed with elimination

Implementing this procedure has an extra benefit - the algorith becomes less

susceptible to rounding error.

Example

[

ε 1

1 1

][

x1

x2

]

=

[

1

2

]

(8.1)

68

For ε 6= 0 the matrix is nonsingular and a unique solution exists. The exact

solution, in terms of ε is

x1 =
1

1 − ε
= 1 + O(ε)

x2 =
1 − 2ε

1 − ε
= 1 + O(ε)

but consider solving this system for ε very small.

Without pivoting:

[

ε 1

1 1
| 1

2

]

∼
[

ε 1

0 1 − 1/ε
| 1

2 − 1/ε

]

(8.2)

Suppose that ε is so small that, to machine precision, 1 − 1/ε = −ε−1 and

2 − 1/ε = −ε−1, then

[

ε 1

0 1 − 1/ε
| 1

2 − 1/ε

]

≡
[

ε 1

0 −1/ε
| 1

−1/ε

]

(8.3)

with the result that x2 ≡ 1 and x1 ≡ 0. You see that while we get the right

answer for x2, x1 is not correct. The problem is rounding error introduce by

the large number 1/ε.

With pivoting:

[

ε 1

1 1
| 1

2

]

∼
[

1 1

ε 1
| 2

1

]

∼
[

1 1

0 1 − ε
| 2

1 − 2ε

]

≡
[

1 1

0 1
| 2

1

]

.

(8.4)

And x2 ≡ 1, x1 ≡ 1. A nice illustration of the benefits of pivoting even

without zero diagonal elements.

Operation Counts

Many practical problems use very large matrices it is important to know

the computational cost of a specific algorithm. You can do this by counting

operations. Conventionally one counts multiplication and division.

69



For the naive Gaussian elimination write the algorithm as a series of sums

(corresponding to the loops) so that

count =
n
∑

i=1

n
∑

j=i+1

(

2 +
n
∑

k=i+1

1

)

An answer that depends on the matrix size is of more interest than an exact

figure so determine how the largest term in the count depends on the matrix

size. Then,

n
∑

j=i+1

(

2 +
n
∑

k=i+1

1

)

=
n
∑

j=i+1

(

2 +
n−i
∑

m=1

1

)

=

n
∑

j=i+1

(n − i + 2)

= (n − i)(n − i + 2)

Then

count =
n−1
∑

i=1

(n − i)(n − i + 2)

=

n−1
∑

m=1

(m2 + 2m)

=
1

6
n(n − 1)(2n − 1) + n(n − 1)

=
1

3
n3 + O(n2)

where the formulae

n
∑

k=1

k =
1

2
n(n + 1) and

n
∑

k=1

k2 =
1

6
n(n + 1)(2n + 1) have

been used. Thus we have an operation count of
1

3
n3 + O(n2). Repeating this

analysis for the backsubstitution algorithm gives

count =
1

2
n2 + O(n)

70

So then the total cost is

totalcost =
1

3
n3 + O(n2) +

1

2
n2 + O(n)

and you see that the solution step is a power of n cheaper than the elimination

step.

71


