
Chapter 7

Tridiagonal linear systems

The solution of linear systems of equations is one of the most important areas

of computational mathematics. A complete treatment is impossible here but

we will discuss some of the most common problems.

Solving tridiagonal systems of equations

Recall a system of linear equations can be written

a11x1 + a12x2 + . . . a1nxn = f1

a21x1 + a22x2 + . . . a2nxn = f2

...
...

...

an1x1 + an2x2 + . . . annxn = fn

where the aij and fi are known and the xi are unknowns. In matrix-vector

form this is Ax = f , where A has entries aij and x and f are vectors with

components xi and fi respectively.

A common special case is A tridiagonal ie there are only three diagonals

in A that contain nonzero elements: the main diagonal and the superdiagonal
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and subdiagonal. E.g.

A =

















a11 a12 0 . . . 0

a21 a22 a23 . . . 0

0 a32 a33 a34 . . .

. . . . . . . . . . . . . . . . . . . . an−1,n

0 . . . 0 an,n−1 ann

















This makes the solution of the system under certain assumptions, quite easy.

At this stage introduce some notation to simplify things: use li, di, ui to

denote the lower-diagonal, diagonal and upper-diagonal elements

li = ai,i−1, 2 ≤ i ≤ n

di = aii, 1 ≤ i ≤ n

ui = ai,i+1, 1 ≤ i ≤ n − 1

where we adopt the convention that l1 = 0 and un = 0. Then the “aug-

mented” matrix corresponding to the system is given by

and we can store the entire problem using jsut 4 vectors forl, d, u, f instead
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of an n × n matrix that’s mostly zeroes anyway.

Recall from linear algebra methods that the standard means to solve a

linear system (Gaussian elimination) is to eliminate all the components of A

below the main diagonal i.e. reduce A to triangular form. In this case it is

an easy task as we only need to eliminate a single element below the main

diagonal in each column. Thus, you would multiply the first equation by

l2/d1 and subtract this from the second equation to get

and then continue with each successive row. Note this assumes d1 6= 0

and continuing requires d2 − u1(l2/d1) 6= 0 etc. Under these circumstances

we can reduce the system to
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where δ1 = d1, δ2 = d2 − u1(l2/d1), δ3 = d3 − u2(l3/δ2) and in general

δk = dk − uk−1(lk/δk−1) with 2 ≤ k ≤ n.

Similarly,

g1 = f1, g2 = f2 − g1(l2/δ1), g3 = f3 − g2(l3/δ2)

so that the general form is

gk = fk − gk−1(lk/δk−1) , 2 ≤ k ≤ n.

The matrix [T |g] is row equivalent to the original augmented matrix [A|f ]

meaning that we can progress from one to the other using elementary row

operations; thus the two augmented matrices represent systems with exactly

the same solution sets. Moreover, the solution is now easy to obtain, since

we can solve the last equation δnxn = gn to get xn = gn/δn, and then use this

value in the previous equation to get xn−1 and so on, to get each solution

component. Again, carrying out this stage of the computation requires the

assumption that each δk 6= 0 with 1 ≤ k ≤ n.

The first stage of the computation (reducing the tridiagonal matrix A

to the tridiagonal one T ) is generally called the elimination step and the

second stage is generally called the backward solution (or back-solve step).

A pseudocode for this process is below. Note that we don’t store the entire

matrix but only the three vectors needed to define the elements in the nonzero

diagonals. In addition, different variable names are not used for the di, δi etc

but overwrote the originals with new values. This saves storage when working

with large problems.

/* Elimination stage */

for i=2 to n

d(i) = d(i) - u(i-1)*l(i)/d(i-1)

f(i) = f(i) - f(i-1)*l(i)/d(i-1)

endfor
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/* Backsolve stage (bottom row is a special case) */

x(n) = f(n)/d(n)

for i=n-1 downto 1

x(i) = ( f(i) - u(i)*x(i+1)/d(i)
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Example

We will discuss this problem in later lectures. For now we state a common

condition that is sufficient ti guarantee the tridiag solution algorithm given

here will work.
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Diagonal Dominance

Definition: A tridiagonal matrix is diagonally dominant if

di > |li| + |ui| > 0, 1 ≤ i ≤ n

. Example, the matrix

A =













6 1 0 0

2 6 3 0

0 6 9 0

0 0 3 4













Theorem

If the tridiagonal matrix A is diagonally dominant then the algorithm will

succeed, within the limitations of rounding error.

Proof

Diagonal dominance tells us d1 = δ1 6= 0 so all that remains is to show that

each δk = dk − uk−1lk/δk−1 6= 0 for 2 ≤ k ≤ n. Assume for the moment,

l2 6= 0 then

δ2 = d2 − u1l2/d1

≥ d2 − |u1l2/d1|
≥ |u2| + |l2| − |l2|θ1

≥ (|u2| + |l2|)(1 − θ1)

for θ1 = |u1|/|d1| < 1. Therefore, δ2 > 0 since l2 6 −0. If l2 = 0 then we have

δ2 = d2−0 = d2 > 0. We can repeat the argument for each index. Completes

the proof.
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Chapter 8

Solutions of Systems of

Equations

A brief review

A vector x ∈ Rn is an ordered n-tuple of real numbers i.e. x = (x1, x2, . . . , xn)T

where the T denotes this should be considered a column vector.

A matrix, A ∈ Rm×n is a rectangular array of m rows and n columns.

A =









a11 a12 . . . a1n

...

am1 am2 . . . amn









Given a square matrix, A ∈ Rn×n if there exists a second square matrix

B ∈ Rn×n such that AB = BA = I then we say B is the inverse of A.

Note that not all sqaure matrices have an inverse. If A has an inverse it is

nonsingular and if it does not it is singular.

The following theorem summarises the conditions under which a matrix

is nonsingular and also connects them to the solvability of the linear systems

problem.

Theorem

Given a matrix A ∈ Rn×n the following statements are equivalent:

1. A is nonsingular
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2. The columns of A form and independent set of vectors

3. The rows of A form an independent set of vectors

4. The linear system Ax = b has a unique solution for all vectors b ∈ Rn.

5. The homogeneous system Ax = 0 has only the trivial solution x = 0.

6. The determinant is nonzero.

Corollary

If A ∈ Rn×n is singular, then there exist infinitely many vectors x ∈ Rn,

x 6= 0 such that Ax = 0.

There are a number of special classes of matrices. In particular, tridiag-

onal matrices and (later) symmetric positive definite matrices.

A square matrix is lower (upper) triangular if all the elements above

(below) the main diagonal are zero. Thus

U =







1 2 3

0 4 5

0 0 6







is upper tringular, while

L =







1 0 0

2 3 0

4 5 0







is lower triangular.

Note at this stage you should review concepts of spanning, basis, dimension

and orthogonality as we will use these ideas soon in a discussion of eignvalues

and their computation.
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